Dirichlet Problem: Find a function \(\phi(x,y) \) continuous on a domain \(D \) and its boundary, harmonic in \(D \), and taking specified values on the boundary of \(D \).

To solve this, we use the following theorem.

Theorem 28: Let \(\phi_1(x,y) \) and \(\phi_2(x,y) \) each be harmonic in a bounded domain \(D \) and continuous on \(D \) and its boundary. Furthermore, suppose \(\phi_1 = \phi_2 \) on the boundary of \(D \), then \(\phi_1 = \phi_2 \) on \(D \).

Why? If \(\phi_1 = \phi_2 \) on the boundary of \(D \), then \(\phi_1 - \phi_2 = 0 \) on the boundary of \(D \) and is harmonic on \(D \). By the Max-Min Principle 0 is the max and min of \(\phi_1 - \phi_2 \) on \(D \), so \(\phi_1 - \phi_2 = 0 \) on \(D \), thus \(\phi_1 = \phi_2 \) on \(D \).
WE HAVE ALREADY SOLVED DIRICHLET'S PROBLEM IN SOME Instances USING THIS UNIQUENESS OF Solution FOR UNBOUNDED DOMAINS

BUT THERE ARE GENERAL SOLUTIONS TO DIRICHLET'S PROBLEM ON A DISK

POISSON'S INTEGRAL FORMULA

THM 30: LET U BE A REAL-VALUED FUNCTION DEFINED ON THE CIRCLE C_R: \(|z| = R\), AND CONTINUOUS EXCEPT FOR POSSIBLY Finitely-MANY DISCONTinuities. THEN

\[u(r e^{i\theta}) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{u(r e^{i\phi})}{r^2 + r^2 - 2rr\cos(\theta - \phi)} d\phi \]

IS HARMONIC FOR \(|r e^{i\theta}| < R\) AND CONTINUOUS UP TO BOUNDARY WHERE THE BOUNDARY IS CONTINUOUS. (WHY? CAUCHY'S THEOREM IS.)

EXAMPLE: SUPPOSE ON \(|z| = 3\) WE HAVE U AS IN THE PICTURE

\[u = 2 \quad 2\pi/3 \quad u = 1 \quad 2\pi/3 \quad u = 3 \quad u = 1 \quad -2\pi/3 \quad -2\pi/3 \]

FIND HARMONIC \(u(r e^{i\theta})\) ON \(|z| < 3\) THAT IS CONTINUOUS UP TO BOUNDARY
\[
\nu(r e^{i\theta}) = \frac{1}{2\pi} \left(\int_0^{2\pi/3} \frac{1}{\sqrt{9 + r^2 - 6r \cos(t - \theta)}} dt + \int_{2\pi/3}^{4\pi/3} \frac{3}{\sqrt{9 + r^2 - 6r \cos(t - \theta)}} dt \right)
\]

So, for example, \(\phi(0, 0) = \phi(0 e^{i0}) \) so \(r = 0 \) and \(\theta = 0 \) so
\[
\phi(0, 0) = \frac{1}{2\pi} \left(\int_0^{2\pi/3} \frac{1}{9} dt + \int_{2\pi/3}^{4\pi/3} \frac{3}{9} dt + \int_{4\pi/3}^{2\pi} \frac{5}{9} dt \right)
\]

= 2.

Other, more difficult integrals can be evaluated using other techniques (Wolfram Alpha).
Chapter 5: Series Representations for Analytic Functions

Section 5.1 Sequences and Series

We already know what sequences are,
\[z_n = 1 + \frac{i}{n} \]
so
\[\lim_{n \to \infty} z_n = 1. \]

We have seen this in calculus. We will now remind you of series, which also make sense for \(\mathbb{C} \).

Definition: A series is a formal expression of the form:

\[s = \sum_{j=0}^{\infty} a_j = a_0 + a_1 + a_2 + \cdots \]

where the \(a_j \)'s, we let

\[s_n = \sum_{j=0}^{n} a_j \]

be the \(n \)th partial sum of \(s \) and

if
\[\lim_{n \to \infty} s_n = L \]
for some \(L \in \mathbb{C} \), then
we say
\[\sum_{j=0}^{\infty} a_j = L. \]
Example: The series \(\sum_{k=0}^{\infty} c^k \) converges to \(\frac{1}{1-c} \) if \(c \) is less than 1. Called **geometric series**.

Why? \(S_n = \sum_{k=0}^{n} c^k = 1 + c + c^2 + \ldots + c^n = \frac{c^{n+1} - 1}{c - 1} \) (unless \(c = 1 \)) = \(\frac{1 - c^{n+1}}{1-c} \).

So \(\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - c^{n+1}}{1-c} = \frac{1 - \lim_{n \to \infty} c^{n+1}}{1-c} \).

If \(|c| > 1 \) then \(c^{n+1} \to \infty \), if \(|c| < 1 \) then \(c^{n+1} \to 0 \).
If \(|c| = 1 \) then \(c^{n+1} \) spins around the circle as \(n \to \infty \) and if \(c = 1 \) the series is just \(\sum_{k=0}^{\infty} 1 = 1 + 1 + 1 + \ldots \) which is clearly divergent.

We have similar tests for series as in calculus:

Thm 1 (Comparison Test): Suppose for \(\sum_{s=0}^{\infty} a_s \), \(|a_s| \leq M_s \) for all \(s \)

Then if \(\sum_{s=0}^{\infty} M_s \) converges, so does \(\sum_{s=0}^{\infty} a_s \).
THM 2. *(Ratio Test)* If for \(s = \sum_{m=0}^{\infty} a_m \)

have

\[
\lim_{m \to \infty} \left| \frac{a_{m+1}}{a_m} \right| = L \quad \text{as} \quad m \to \infty
\]

then \(s \) converges if \(L < 1 \) and

diverges if \(L > 1 \) (inconclusive if \(L = 1 \)).

Why? Triangle Inequality, Mostly.

Example: Show \(\sum_{j=1}^{\infty} \frac{1+2i^j}{j^5} \) converges

Comparison Test

\[
\left| \frac{1+2i^j}{j^5} \right| \leq \frac{|1| + |2i^j|}{|j|^5} = \frac{1 + 2}{j^5} = \frac{3}{j^5}
\]

Since \(\sum_{j=1}^{\infty} \left(\frac{1}{j^5} + \frac{2}{j^5} \right) = \sum_{j=1}^{\infty} \frac{1}{j^5} + 2 \sum_{j=1}^{\infty} \frac{1}{j^5} \)

both converge by

\(p \)-Series Test \(\left(\sum_{j=1}^{\infty} \frac{1}{j^p} \text{ converges if } p > 1 \right) \)

So \(\sum_{j=1}^{\infty} \frac{1+2i^j}{j^5} \) converges

Example: Show \(\sum_{k=0}^{\infty} \frac{(1+2i)^k}{k!} \) converges

Ratio Test: \(a_k = \frac{(1+2i)^k}{k!} \)

\[
\left| \frac{a_{k+1}}{a_k} \right| = \frac{k! |1+2i|^{k+1}}{(k+1)! |1+2i|^k} = \frac{|1+2i|}{k+1} \to 0 \quad \text{so}
\]

it converges.