We say a domain D is **simply connected** if every loop in D is C.D. to a point.

Theorem 9: (Cauchy's Integral Theorem)

If f is analytic on an S.C.-domain D,

$$\oint_{\Gamma} f(z) \, dz = 0$$

for any closed loop Γ in D.

Theorem 8: (Deformation Invariance Thm)

If f is analytic in a domain D and $\Gamma_0 \sim \Gamma_1$ in D then

$$\oint_{\Gamma_0} f(z) \, dz = \oint_{\Gamma_1} f(z) \, dz$$

Why?! Well, it's a very complicated answer.
It uses Green's theorem and the Cauchy-Riemann eqs, and the fact that the range of $\mathbf{z}(s,t)$ is simply-connected.

If you really want to know why, see section 4.4 of the book or ask me sometime.

Example: Compute \[\int_{\Gamma} \frac{5z+1}{(z-1)(z+2)} \, dz \] where \(\Gamma \) is the path shown.

We can see $\frac{5z+1}{(z-1)(z+2)}$ is analytic everywhere except $z=1, -2$, so we can deform the curve on the domain containing it.

\[
\int_{\Gamma} \frac{5z+1}{(z-1)(z+2)} \, dz = \int_{\gamma_1} \frac{5z+1}{(z-1)(z+2)} \, dz + \int_{\gamma_2} \frac{5z+1}{(z-1)(z+2)} \, dz + \int_{\gamma_3} \frac{5z+1}{(z-1)(z+2)} \, dz
\]
Now Y_2 is a closed loop contained in an S.C. domain where $\frac{5z+1}{(z-1)(z+2)}$ is analytic.

So $\int \frac{5z+1}{(z-1)(z+2)} \, dz = 0$. Also $\frac{5z+1}{(z-1)(z+2)} = \frac{2}{z-1} + \frac{3}{z+2}$.

So $\int \frac{5z+1}{P(z-1)(z+1)} \, dz = \int \frac{2}{z-1} \, d\tau + \int \frac{2}{z+1} \, d\sigma + \int \frac{5}{z+2} \, d\tau + \int \frac{5}{z+2} \, d\tau$

$= 2(2\pi i) + 2(0) + 3(0) + 3(2\pi i)$

$= 10\pi i$.

§4.5 Cauchy's Integral Formula

A contour is **simple** if it doesn't self-intersect except possibly at endpoints.

Theorem 14

Cauchy's Integral Formula: Let P be a simple closed positively oriented contour. If f is analytic on a S.C. domain containing P and z_0 is in the interior of P then

$$f(z_0) = \frac{1}{2\pi i} \int_P \frac{f(z)}{z-z_0} \, dz$$
IDEA:

\[\frac{1}{2\pi i} \int_{|z-z_0|=r} f(z) \, dz = z_0. \]

WHY? EASIER TO EXPLAIN WITH TAYLOR SERIES BUT...

\[\int_{|z-z_0|=r} \frac{f(z)}{z-z_0} \, dz = \int_{\Gamma} \frac{f(z)}{z-z_0} \, dz + \int_{C_r} \frac{f(z)-f(z_0)}{z-z_0} \, dz \]

CAN REPLACE \(\Gamma \) WITH CR A CIRCLE OF RADIUS \(r > 0 \) CENTERED AT \(z_0 \) BY CAUCHY'S INTEGRAL THEOREM SO

\[\int_{|z-z_0|=r} \frac{f(z)}{z-z_0} \, dz = 2\pi i f(z_0) + \int_{C_r} \frac{f(z)-f(z_0)}{z-z_0} \, dz \]

BUT \[\left| \int_{C_r} \frac{f(z)-f(z_0)}{z-z_0} \, dz \right| \leq \lambda(C_r) \max_{z \in C_r} \left| \frac{f(z)-f(z_0)}{z-z_0} \right| \]

\[\leq (2\pi r) \frac{M_r}{r} = 2\pi M_r \]

WHERE \(M_r = \max_{z \in C_r} |f(z) - f(z_0)| \)
\[\lim_{r \to 0} M_r = 0 \quad \text{so} \quad \lim_{r \to 0} \oint_C \frac{f(z)}{z - z_0} \, dz = 0. \]

But the integral is the same for all \(C \), so
\[\oint_C \frac{f(z) - f(z_0)}{z - z_0} \, dz = 0. \]

So
\[\oint_C \frac{f(z)}{z - z_0} \, dz = \oint_C \frac{f(z_0)}{z - z_0} \, dz = 2\pi i f(z_0). \]

Example: Evaluate \(\oint_C \frac{e^{z^2}}{z^2 - 1} \, dz \) counterclockwise.

\[\frac{e^{z^2}}{z^2 - 1} \, dz = \frac{1}{2} (2\pi i) e^{\frac{(i)^2}{2}} = \frac{1}{2} (2\pi i) e^{-\pi i/2}. \]

\[|z^2 - 1| = 1 \quad \text{continuous \(\epsilon \)-deformed circle, \(\epsilon \)-analytic around.} \]

Example
\[\oint_{|z| = 1} \frac{z^2 + 1}{z(z - 2)} \, dz = \oint_{|z| = 1} \frac{(z^2 + 1)/(z - 2)}{z} \, dz. \]

\[= 2\pi i \left(\frac{(0^2 + 1)}{(0 - 2)} \right) = 2\pi i \left(-\frac{1}{2} \right) = -\pi i. \]

Since \(f(z) = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w - z} \, dw \).
We are tempted to say
\[f'(z) = \frac{d}{dz} \int_{\gamma} \frac{f(w)}{w-z} \, dw = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^2} \, dw \]

\[= \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^2} \, dw. \text{ Indeed, this works and we can say something stronger} \]

Theorem 15. Let \(g(z) \) be continuous on the contour \(\gamma \) (that's it) let \(\gamma \) (not necessarily closed)

\[g(z) = \int_{\gamma} \frac{g(w)}{w-z} \, dw \text{ for } w \neq \gamma \]

"Not \(\gamma \)"

Then \(g \) is analytic for all \(z \neq \gamma \).

Why the heck should that be true?!

We can show \(\lim_{\Delta z \to 0} \frac{G(z+\Delta z)-G(z)}{\Delta z} = \int_{\gamma} \frac{g(w)}{(w-z)^2} \, dw \)

explicitly (see book).

But wait... if \(f'(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^2} \, dw \)

Then since \(\frac{f(w)}{(w-z)} \) is continuous for \(w \neq \gamma \)

For \(\gamma \) that means \(f'(z) \) is analytic.