43. WILL NOT WORK FOR CLOSED CURVE AROUND ORIGIN:

\[\gamma \]

\[\mathbb{R} \times \mathbb{R} \] \(\times \) AN ANTI-DERIVATIVE ON A DOMAIN CONTAINING \(\gamma \) BECAUSE OF THE BRANCH CUT.

Corollary 2: IF \(f(z) \) IS CONTINUOUS ON \(D \) WITH ANTI-DERIVATIVE \(F(z) \) ON \(D \) THEN \(\int_{\gamma} f(z) \, dz \) FOR ALL CLOSED CONTOURS \(\gamma \).

Why? \[\int_{\gamma} f(z) \, dz = F(z_1) - F(z_0) = 0 \] \(\text{since} \ z_1 = z_0 \text{ for closed } \gamma \).

IN FACT, WE CAN SAY SOMETHING STRONGER

Theorem 7: LET \(f \) BE CONTINUOUS IN A DOMAIN \(D \). THEN THE FOLLOWING ARE EQUIVALENT.
a) \(f \) has an antiderivative on \(D \).

\[\int \]

b) \(\oint_{C} f(z) \, dz = 0 \) for all closed contours \(C \).

\[\int \]

c) If \(\Gamma_1 \) and \(\Gamma_2 \) have the same endpoints and direction, \(\oint_{\Gamma_1} f(z) \, dz = \oint_{\Gamma_2} f(z) \, dz \) (path-independence).

\[\int \]

Why? Already showed a) \(\Rightarrow \) b) in Corollary 2. b) \(\Rightarrow \) c) because \(\Gamma_1 - \Gamma_2 \) is a closed loop.

\[\oint_{\Gamma_1 \setminus \Gamma_2} f(z) \, dz = 0 \]

\[\int \]

\[\oint_{\Gamma_1} f(z) \, dz - \oint_{\Gamma_2} f(z) \, dz = 0 \Rightarrow \oint_{\Gamma_1} f(z) \, dz = \oint_{\Gamma_2} f(z) \, dz \]

\[\int \]

c) \(\Rightarrow \) b) because if \(\gamma \) is any curve from \(z_0 \) to \(z \) then we can show \(F(z) = \int_{z_0}^{z} f(w) \, dw \) is an antiderivative of \(f(z) \). [See book].
§4.4 CAUCHY'S INTEGRAL THEOREM

We say the loop Γ_0 is continuously deformable (CD) to Γ_1 in the domain D if you can bend Γ_0 to be Γ_1 while staying in D.

We can think of Γ_s set $s \in [0,1]$ as the set of curves in between, each with parametrization $\Gamma_s(t)$ with $t \in [0,1]$.

Definition 5: Γ_0 is CD to Γ_1 in D if there exists continuous $Z(s,t) = \Gamma_s(t)$ for $s, t \in [0,1]$ and $Z(s,t) \subset D$.

Example: $\Gamma_5 \sim \Gamma_4$ but Γ_1 is not CD to Γ_2, Γ_3, or Γ_4.
We say a domain D is \underline{simply connected} if every loop in D is connected to a point.

\begin{itemize}
 \item Simply connected
 \item S.C.
 \item Not S.C.
 \item Not S.C.
\end{itemize}

Theorem 9: (Cauchy's Integral Theorem)
If f is analytic on an S.C. domain D

\[
\oint_{\Gamma} f(z) \, dz = 0
\]

For any closed loop Γ in D

Theorem 8: (Deformation Invariance Thm)
If f is analytic in a domain D and $\Gamma_0 \sim \Gamma_1$ in D then

\[
\oint_{\Gamma_0} f(z) \, dz = \oint_{\Gamma_1} f(z) \, dz
\]

Why? Well, it's a very complicated answer.
IT USES GREEN'S THEOREM, AND THE CAUCHY-RIEMANN Eqs., AND THE FACT THAT THE RANGE OF $z(s,t)$ IS SIMPLY-CONNECTED.

IF YOU REALLY WANT TO KNOW WHY, SEE SECTION 4.4 OF THE BOOK OR ASK ME SOMETIME.

EXAMPLE: COMPUTE $\int_{\Gamma} \frac{5z+1}{(z-1)(z+2)} \, dz$ WHERE

![Diagram](image)

WE CAN SEE $\frac{5z+1}{(z-1)(z+2)}$ IS ANALYTIC EVERYWHERE EXCEPT $z=1, -2$, SO WE CAN DEFORM THE CURVE ON THE DOMAIN CONTAINING IT

$$\int \frac{5z+1}{(z-1)(z+2)} \, dz = \int_{z_1} \frac{5z+1}{(z-1)(z+2)} \, dz$$

$$+ \int_{z_2} \frac{5z+1}{(z-1)(z+2)} \, dz$$

$$+ \int_{z_3} \frac{5z+1}{(z-1)(z+2)} \, dz$$