We can compute the length of a smooth curve with the integral formula:

\[l(\gamma) = \text{length of } \gamma = \int_a^b \frac{ds}{dt} dt \]

where \(\frac{ds}{dt} = \sqrt{(x'(t))^2 + (y'(t))^2} = |\gamma'(t)| \)

So in the previous example, the length of \(\gamma_2 \) is:

\[\gamma_2(x) = 1 + i + e^{i(\pi/2-\pi t)} \Rightarrow \gamma_2'(t) = -i\pi e^{i(\pi/2-\pi t)} \]

So \(|\gamma_2'(t)| = \pi \).

So \(l(\gamma) = \int_0^1 \pi dt = \pi \), which is what we expect.

The length of a contour is just the sum of the lengths of the curves:

\[l(\Gamma) = \text{length of } \Gamma = l(\gamma_1) + l(\gamma_2) + \ldots + l(\gamma_n). \]

A simple closed contour is a contour that starts where it ends but otherwise does not self-cross. Ex: \(\square \) not \(\bigcirc \) this \(\bigcirc \) not this.
84) **Jordan Curve Theorem**

Any simple closed contour separates C into two domains, each having a curve as a boundary. One domain is bounded, called the interior, and one is not, called the exterior.

![Diagram](Exterior_Interior)

Very intuitive theorem, not easy to prove.

If the curve is oriented such that the interior is on the left of the curve (counter-clockwise), we say it is positively oriented. Otherwise negatively oriented.

![Diagram](Positively_Oriented_Negatively_Oriented)
§4.7 CONTOUR INTEGRALS

Idea: Given a curve γ and a function $f(z)$ on a region of \mathbb{C} containing γ, we can chop up the curve into pieces and evaluate $f(z)$ at points on each piece.

Let

$$S_n = f(c_1)(z_1 - z_0) + f(c_2)(z_2 - z_1) + \cdots + f(c_n)(z_n - z_{n-1})$$

looks like

$$\sum_{k=1}^{n} f(c_k)(z_k - z_{k-1}) = \sum_{k=1}^{n} f(c_k)\Delta z_k$$

Definition 3: We say f is integrable along γ if, taking partitions where $n \to \infty$ and $\Delta z_k \to 0$, then S_n always goes to some $L \in \mathbb{C}$.

We say

$$L = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k)\Delta z_k = \int_{\gamma} f(z) \, dz$$

From this we have some of the obvious rules:
\[\int g(x) \, dx = \int f(x) \, dx \pm \int h(x) \, dx \]

\[\int cf(x) \, dx = c \int f(x) \, dx \text{ for } c \in \mathbb{C} \]

\[\int f(x) \, dx = -\int f(x) \, dx \]

Theorem 2: If \(f \) is continuous on the directed smooth curve \(\gamma \), then \(f \) is integrable on \(\gamma \).

How do we evaluate \(\int_{\gamma} f(x) \, dx \)?

Well, how do you evaluate \(\int_{a}^{b} f(t) \, dt \) when \(f \) is complex valued?

\(f(t) = u(t) + iv(t) \)

\(\text{(} \gamma \text{ is just the real line segment } [a,b]) \)

\(\text{REAL-VALUED FUNCTIONS} \)

\[\int_{a}^{b} f(t) \, dt = \int_{a}^{b} u(t) \, dt + i \int_{a}^{b} v(t) \, dt \]

\[= [u(t)]_{a}^{b} + i [v(t)]_{a}^{b} = [u(t) + iv(t)]_{a}^{b} \]

\(\text{AT I: DERIVATIVES of } u(t) \text{ and } v(t) \)

Let \(F(t) = u(t) + iv(t) \), then \(F'(t) = u'(t) + iv'(t) \)

\[= u(t) + iv(t) \]

\[= f(t). \]