So \(\varphi(x, y) = \left(\frac{\pi - \pi}{2} \right) x + \frac{\pi + \pi}{2} \).

In general, the strategy is to look for a known harmonic function which is similarly constant on the boundary.

§ 3.5 Complex Powers

What does \(z^i \) mean? Well, what does \(x^i \) mean for \(x \in \mathbb{R} \)?

\[x^i = e^{i \ln x} \text{ for real } x > 0. \]

So we figure we do the same sort of thing for \(z^i \):

\[z^i = e^{i \log(z)} \]

But \(\log(z) \) is multiple-valued, so \(z^i \) is not uniquely defined.

Definition 5. If \(\alpha \) is a complex constant and \(z \neq 0 \), then we define \(z^\alpha \) by

\[z^\alpha = e^{\alpha \log z} \]
If a function, \(f(z) \), is multiple-valued then \(F(z) \) is a branch of \(f(z) \) on a region \(R \) if \(F(z) \) is continuous on \(R \) and agrees with one of the values of \(f(z) \).

Example: If \(f(z) = \log(z) \), \(F(z) = \sum (z) \) is a branch of \(f(z) \).

If \(g(z) = \log(z^2 - 1) \), \(G(z) = \sum (z^2 - 1) \) is a branch of \(g(z) \).

If \(h(z) = z^n \), \(H(z) = e^{\alpha \sum (z)} \) is a branch of \(h(z) \).

For this class, all examples of branches involve logarithm.

Example: Find all values of \((z^i)^z \).

\[
\log(z^i) = \log|z|i\left(\frac{\pi}{2} + 2\pi k\right) \quad k \in \mathbb{Z}
\]

So

\[
(z^i)^z = e^{i\log|z|i\left(\frac{\pi}{2} + 2\pi k\right)} = e^{\frac{\pi i}{2}} e^{i \log|z|} e^{2\pi i k}
\]
\(z^\alpha = e^{(\log|z| + i\arg(z))} e^{2\pi i k} \) \(k \in \mathbb{Z} \)

All roots lie on the \(\arg(z) = \log|z| \) line, and have varying magnitudes.

We see \(z^\alpha = e^{(\log|z| + i\arg(z))} e^{2\pi i k} \) \(k \in \mathbb{Z} \)

This set is finite only if different \(k \)'s give the same value, that is

\[e^{2\pi i k_1} = e^{2\pi i k_2} \Rightarrow 2\pi i k_1 = 2\pi i k_2 + 2\pi i m \]

For some \(m \in \mathbb{Z} \), \(k_1 = k_2 \)

so \(\alpha k_1 = \alpha k_2 + m \Rightarrow \alpha = \frac{m}{k_1 - k_2} \) so \(\alpha \) is real +

This argument is reversible so

\(z^\alpha \) is finite iff \(\alpha \) is rational, \(\frac{m}{n} \)

Also \(z^\alpha \) is single-valued iff \(e^{2\pi i k} = 1 \) for all \(k \). So \(\alpha 2\pi i k = 2\pi i m \) so \(\alpha k = m \) so \(\alpha \in \mathbb{Z} \) for all \(k \in \mathbb{Z} \), so \(\alpha \in \mathbb{Z} \).
e^z is single-valued iff $x \in \mathbb{Z}$.

We call $e^{x \log z}$ the principal branch of z^x and it's analytic away from the branch cut, by chain rule:

$$\frac{d}{dz} z^x = \frac{d}{dz} e^{x \log z} = \frac{x}{z} e^{x \log z} = \frac{x}{z} z^x$$

Sort of like our power rule since $\frac{x}{z} z^x =^\sim x z^{x-1}$ provided we use the same branch cuts for z^x and z^{x-1}.

Finding a branch of $(f(z))^x$ can be tedious and counter-intuitive.

Example: Find a branch of $(z^2-1)^{1/2}$ that is analytic for $|z| > 1$.

Let $g(z) = z^2 - 1$. Notice $g(z)$ takes $|z| > 1$ to $|z+1| > 1$.

\[
\begin{array}{c}
\begin{array}{c}
\text{y} \\
\text{x} \\
\end{array}
\end{array}
\longrightarrow
\begin{array}{c}
\begin{array}{c}
\text{y} \\
\text{x} \\
\end{array}
\end{array}
\]
Every possible argument is hit by this domain, so $e^{\frac{i}{2} \pi} \sqrt{z^2 - 1}$ won't work for any πi. What do we do?

Let $(z^2 - 1)^{\frac{1}{2}} = z(1 - \frac{1}{z})^{\frac{1}{2}}

Both work since squaring both gives the desired answer. Let $h(z) = 1 - \frac{1}{z^2}$.

So any $z \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ will work, so our branch can be $z e^{\frac{i}{2} \pi} \sqrt{1 - \frac{1}{z^2}}$.

There's no general technique here, just be clever.