We can also define \(\tan z, \cot z, \sec z, \csc z \)

in terms of \(\sin z \) and \(\cos z \) in the usual

way and the derivatives are what you'd expect.

(i.e. \(\frac{d}{dz} \tan z = \sec^2 z \)).

Note however that \(|\sin z| \leq 1 \) when \(z \in \mathbb{R} \).

The range of \(\sin z \) and \(\cos z \) is much larger.

Indeed \(|\cos(iz)| = \left| \frac{e^x + e^{-x}}{2} \right| \\
\geq 1 \).

Also have hyperbolic trig functions:

Definition: \(\sinh z := \frac{e^z - e^{-z}}{2} = \frac{1}{i} \sin(iz) \)

\(z \in \mathbb{C} \):

\(\cosh z := \frac{e^z + e^{-z}}{2} = \cos(iz) \).

Exercise: \(\frac{d}{dz} \sinh z = \cosh z \), \(\frac{d}{dz} \cosh z = \sinh z \).

\(\tanh(z) := \frac{\sinh z}{\cosh z} \), similarly for \(\coth(z), \text{sech}(z), \csc(h)(z) \).

§ 3.3 The logarithmic function

We want to define \(\log z \) the same way we define it for real numbers:

\[w = \log z \text{ if } z = e^w \]

The problem is that \(f(z) = e^z \) is not a one-to-one function, so
(15) \(\log z \) WHICH IS THE INVERSE OF \(e^z \) IS MULTIPLE-VALUED.

Let \(\text{Ln}(x) \) BE THE REAL, BASE \(e \) LOGARITHM YOU ARE FAMILIAR WITH:
\[
y = \text{Ln}(x) \iff e^y = x.
\]

This is well-defined for \(x > 0 \). So let \(z = re^{i\theta} \). Then we see \(z = e^{\text{Ln}(r)} e^{i\theta} \)
So \(z = e^{\text{Ln}(r)+i\theta} \), but also \(z = e^{\text{Ln}(r)+i(\theta+2\pi k)} \) \(k \in \mathbb{Z} \)
So we have \(\log z = \text{Ln}(r)+i\theta+2\pi ik \) \(k \in \mathbb{Z} \).

With \(z \neq 0 \), this is multiple-valued. Since \(r = |z| \)
and \(\theta+2\pi k = \text{Arg} z \) we see

Definition 3: If \(z \neq 0 \), then we define
\(\log z \) TO BE THE SET OF INFINITELY MANY VALUES:
\[
\log z = \text{Ln}|z|+i\text{Arg} z
\]
or \(\log z = \text{Ln}|z|+i\text{Arg} z + 2\pi ik, \ k \in \mathbb{Z} \).

Example: Find \(\log(2-2i) \).
We have \(|2-2i| = \sqrt{2^2+2^2} = 2\sqrt{2} \) AND \(\text{Arg}(2-2i) = -\frac{\pi}{4} \)
So \(\log(2-2i) = \text{Ln}(2\sqrt{2}) + i(2\pi k - \frac{\pi}{4}) \).

Also, since \(\text{Arg} z_1 z_2 = \text{Arg} z_1 + \text{Arg} z_2 \)
and \(\text{Arg} (\frac{z_1}{z_2}) = \text{Arg} z_1 - \text{Arg} z_2 \) we have
\[\log z_1 z_2 = \log z_1 + \log z_2 \]

And \[\log \frac{z_1}{z_2} = \log z_1 - \log z_2 \]

But these are multiple-valued (lower case).

Often, however, we want a single-valued function, so we can compute derivatives and such. Addition and division rules don't work for this.

Definition \[\log z := \ln |z| + i \arg z \]

Call this the principal branch of logarithm. It is defined everywhere except 0, but it is also not continuous at real, negative \(z \), like \(\arg(z) \).

Let \(D^* \) be the entire complex domain except for the branch cut:

\[y \]
\[\text{everywhere but here} \]
\[= D^* \]

Theorem 4: \(\log z \) is analytic on \(D^* \) with derivative \(\frac{1}{z} \).
\textbf{Proof:} \[\lim_{\Delta z \to 0} \frac{\log(z_0 + \Delta z) - \log(z_0)}{\Delta z} \]

\[= \lim_{\Delta z \to 0} \frac{\log(z_0 + \Delta z) - \log(z_0)}{\log(z_0 + \Delta z) - \log(z_0)} \quad \text{Let } W = \log(z_0 + \Delta z) \]

\[W_0 = \log(z_0) \]

\[= \lim_{W \to W_0} \frac{e^W - e^{W_0}}{W - W_0} = \frac{1}{e^{W_0}} = e^{W_0} = \frac{1}{z_0}. \]

This substitution works provided we are away from the branch cut.

We can define other branches of \(\log \) with other branches of \(\log \):

\[S_c(z) = \ln |z| + i \arg_c(z), \text{ for } z \in \mathbb{R}. \]

We can also show \[\frac{\partial}{\partial z} S_{c}(z) = \frac{1}{z} \text{ everywhere except its branch cut!} \]

So \textbf{Corollary 1:} \(\arg z \) is harmonic on \(\mathbb{D}^* \) and \(\arg \) is harmonic away from its branch cut.
\textbf{Corollary 2:} \(\ln |z| = \log |z| \) is harmonic everywhere but 0.

Both of these facts can be checked explicitly.

\textbf{Example:} Determine where \(\log (iz + 2) \) is analytic.

\(\log (z) \) is analytic except where \(z \) is real non-positive so \(\log (iz + 2) \) is analytic where \(iz + 2 \) is not real non-positive:

\[iz + 2 = t \text{ where } t \in \mathbb{R}, \ t \geq 0 \]

so \(z = \frac{t - 2}{i} = i(2 - t) \) is where \(\log (iz + 2) \) is not analytic:

We can use the other branches of \(\log \) to deal with points where \(\log \) is undefined.
Definition 4: Let \(f(z) \) be a multiple-valued function (like \(\log(z) \)). We say \(F(z) \) is a branch of \(f(z) \) on a domain \(D \) if it is single-valued and continuous on \(D \) and \(F(z) \) is one of the values of \(f(z) \).

So like \(\log(z) \) and \(\log(z) \).

Example: Determine a branch, \(F(z) \), of \(F(z) = \log((z-3)^3) \) such that it is analytic at \(z = 1 \) and \(F(1) = \ln 18 + 3\pi i \).

\(F' \) for \(F(1) \).

Well, \((1-3)^3 = -8 \) which is on the branch cut for \(\log z \) so we need a different branch of \(\log z \). Since \(\arg_{2\pi}(-8) = 3\pi \), we use \(\zeta_{2\pi}((z-3)^3) = F(z) \) since \(\zeta_{2\pi}(-8) = \ln 18 + 3\pi i \).

Also \(\frac{d}{dz} \zeta_{2\pi}((z-3)^3) = \frac{1}{(z-3)^3} \cdot 3(z-3)^2 \left|_{z=1}^{z=1} \right. = \frac{3}{z-3} \left|_{z=1}^{z=1} \right. = \frac{3}{1-3} = -\frac{3}{2} = F'(1) \).