We say \(z_0 \) is a singularity of \(f(z) \) if \(f(z) \) is analytic on a neighborhood of \(z_0 \) except at \(z_0 \) itself.

In the previous example, \(z = -1 \) was a singularity.

Example: \(f(z) = \text{Re}(z) \) is nowhere diff.

\(f(z) = \frac{z + \overline{z}}{2} = \frac{z}{2} + \frac{\overline{z}}{2} \) so \(2f(z) - z = \overline{z} \). Since \(z \) is entire, if \(f(z) \) is diff. at \(z_0 \) then \(2f(z) - z = \overline{z} \) is diff. at \(z_0 \). But \(\overline{z} \) is nowhere diff., so \(f(z) \) is nowhere diff.

But there are easier ways to determine if \(f(z) \) is diff.

§ 2.4 \textbf{The Cauchy-Riemann Equations}

We would like to tell if \(f(z) = u(x,y) + i v(x,y) \) is diff. just by looking at \(u \) and \(v \).

Recall that \(f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \)

Since \(\Delta z = \Delta x + i \Delta y \) we can let \(\Delta z \) go to zero by fixing \(\Delta y = 0 \) and letting \(\Delta x \to 0 \) so
\[\text{IF LIMIT EXISTS,} \]
\[\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{f(x_0 + i \Delta x + i \Delta y) - f(x_0, y_0)}{\Delta z} \]
\[= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) + iv(x_0 + \Delta x, y_0) - (u(x_0, y_0) + iv(x_0, y_0)) + i}{\Delta x} \]
\[= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x} \]
\[= \frac{\partial u}{\partial x} (z_0) + i \frac{\partial v}{\partial x} (z_0) = f'(z_0) \]

But we could’ve also fixed \(\Delta x = 0 \) and let \(\Delta y \to 0 \)

\[\lim_{\Delta y \to 0} \frac{f(x_0 + i(y_0 + \Delta y)) - f(x_0, y_0)}{i \Delta y} = \frac{f(x_0, y_0 + \Delta y) + iv(x_0, y_0 + \Delta y) - (u(x_0, y_0) + iv(x_0, y_0))}{i \Delta y} \]
\[= \lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i \Delta y} + \lim_{\Delta y \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i \Delta y} \]
\[= \frac{\partial v}{\partial y} (z_0) - i \frac{\partial u}{\partial y} (z_0) = \overline{f'(z)} \]
\[= \frac{\partial u}{\partial x} (z_0) + i \frac{\partial v}{\partial x} (z_0) \]

These limits must agree so
We have the Cauchy-Riemann equations
\[\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \] (CREs)

must hold at \(z_0 \) if \(f(z) \) is diff. at \(z_0 \).

Theorem 4. A necessary condition for a function \(f(z) = u(x,y) + iv(x,y) \) to be diff. at a point \(z_0 \) is that the CREs hold at \(z_0 \). Furthermore, if \(f(z) \) is analytic on an open set \(G \), then the CREs hold at every point in \(G \).

How do I remember CREs?

Remember that \(\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \)

\[\Rightarrow \frac{\partial u}{\partial x} = \frac{1}{i} \frac{\partial (u+iv)}{\partial y} \]

\[\Rightarrow \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} \]

Compare real + imaginary parts

Example: \(f(x,y) = x^2 - y^2 - 2ixy \) is not analytic anywhere.

\(u(x,y) = x^2 - y^2 \Rightarrow \frac{\partial u}{\partial x} = 2x \) and \(\frac{\partial u}{\partial y} = -2y \)

\(v(x,y) = -2xy \Rightarrow \frac{\partial v}{\partial x} = -2y \) and \(\frac{\partial v}{\partial y} = -2x \)

If CREs hold \(2x = -2x \) and \(-2y = 2y \)
This is only possible if \(x = 0 \) and \(y = 0 \), so the set of points where \(f(z) \) is potentially analytic is not an open set.

We have a stronger theorem.

Theorem 5. Let \(f(z) = u(x, y) + iv(x, y) \) be defined on some open set \(G \) containing \(z_0 \), if the first partial derivatives \(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \) exist and are continuous in \(G \) at \(z_0 \), then \(f(z) \) is diff. at \(z_0 \).

Consequently, if CREs hold on all of \(G \) then \(f(z) \) is analytic on \(G \).

Proof: See book. This is not a proof-intensive class, uses mean value theorem for real #s.

So \(f(x) = x^2 - y^2 - 2ixy \) is indeed diff. at \(z_0 = 0 \).

In previous example.

Example: Prove \(f(z) = e^z \) is entire and find its derivative.
\[f(z) = e^z e^{i\gamma} = e^x (\cos y + i \sin y) \]

\[u(x, y) = e^x \cos y, \quad v(x, y) = e^x \sin y \]

so \[\frac{\partial u}{\partial x} = e^x \cos y = \frac{\partial v}{\partial y} \] and \[\frac{\partial u}{\partial y} = -e^x \sin y = -\frac{\partial v}{\partial x} \]

so \text{CRES ARE SATISFIED EVERYWHERE AND PARTIAL DERIVS ARE CONTINUOUS EVERYWHERE. SO } f(z) \text{ IS ENTIRE. FURTHERMORE} \]
\[\frac{d}{dz} f(z) = \frac{\partial u}{\partial x} + i \frac{\partial u}{\partial y} \]
\[= e^x \cos y + i e^x \sin y \]
\[= e^z. \]

so \[\frac{d}{dz} e^z = e^z. \]

Theorem 6.1 If \(f(z) \) is analytic on the domain \(D \) (open, connected) and if \(f'(z) \neq 0 \) everywhere then \(f(z) \) is constant on \(D \).

Why? \[f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} - i \frac{\partial u}{\partial x} = 0 \]
on \(D \), so \[\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0 \] and \[\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0. \]

if the partials of \(u \) and \(v \) are 0 on a domain, they are constant on \(D \). so \(f = u + iv \) is constant on \(D \).