
Topics in Algebra Scott Taylor

HW 6: Generators, Relations, Homomorphisms

This assignment gives you more practice with group presentations and group actions.

(1) In a group g, remember that the commutator of two elements a, b is [a, b] = aba−1b−1. Let
G = 〈S|R〉 be given by a presentation. Let R′ = {[s, t]|s, t ∈ S} and let G′ = 〈S|R ∪ R′〉.
Incidentally, 〈〈R′〉〉 is called the commutator subgroup of G. Show the following:

(a) If there is a surjective homomorphism from G to a nonabelian group, then G is non-
abelian.

(b) G′ is abelian and there is a surjective homomorphism α : G → G′. (The group G′ is
called the abelianization of G)

(c) Whenever A is an abelian group such that there is a homomorphism h : G→ A, then
there is a homomorphism h : G′ → A such that h = h◦α. (That is, all homomorphisms
to an abelian group factor through the abelianization of G.

(2) Let G = 〈x, y|x2y−3〉.

(a) Show that G also has presentation 〈a, b|aba = bab〉

(b) Construct as much of a Cayley graph for G as you have patience for.

(c) Show that the abelianization of G is isomorphic to Z; in particular G is an infinite
group.

(d) Find an element in G of infinite order.

(e) Find a surjection of G onto a nonabelian group. (Hint: try Z/2Z ∗ Z/3Z, but bonus
points if you can find a finite one!) Conclude that G is a nonabelian infinite group
whose abelianization is Z.

(3) Suppose that A = 〈S|R〉 and B = 〈T |U〉. Also suppose that there is a subgroup H < A
and an injective homomorphism φ : H → B. Let V = {φ(h)h−1 : h ∈ H}. Define A∗H B =
〈S ∪ T |R ∪ U ∪ V 〉. This group is called the free product of A and B amalgamated
along H. The notation is misleading because the group depends on the map φ, not just
the subgroup H.

(a) Let A = Z and B = Z. Find a subgroup H < A and a homomorphism H → B so that
that the group G from the previous problem is isomorphic to Z ∗H Z.

(b) Explain why the case when H = {1} produces the free product A ∗B.

(4) (Bonus) This problem is an important result in group theory. Working on it will help you
internalize several of the methods we’ve covered so far. It proves a partial converse to
Meier 3.28. It shows that in a fairly general setting, if a group acts on a graph then it is an
amalgamated product. It can be generalized somewhat to weaken the hypotheses, but we
won’t explore that in our course. The branch of GGT that is concerned with this theorem
and its ilk is called “Bass-Serre Theory” after the two mathematicians who pioneered it.
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Let Γ be a bipartite graph and suppose that G is a group acting on it and that no element
of G has order 2 (in particular, no element flips an edge of Γ). Suppose also that the action
is edge transitive (i.e. there is a single orbit of edges) and that the action is transitive on
each partite set (i.e. if the vertices are black and white, all black vertices are in the same
orbit and all white vertices are in the same orbit.)

(a) Pick an edge e with black endpoint v and white endpoint w. Let AG = stabG(v),
BG = stabG(w) and HG = stabG(e). Explain why HG is a subgroup of both AG and
BG.

(b) Suppose that v′ is a black vertex. Prove that the subgroup stabG(v′) is a conjugate of
stabG(v). A similar statement holds for the white vertices and for the edges.

(c) Explain why e is a fundamental domain for the action and explain what generating set
it produces (as in Meier Thm. 1.55). Can you see why this generating set is potentially
much larger than necessary?

(d) Let SG be a generating set for AG defined by taking every element of HG as a generator,
together with one element from each coset in AG/HG. Let S be a set disjoint from
G but in bijection with SG. Explain why there is a set of relations R ⊂ S∗ such that
A = 〈S|R〉 is a presentation for AG. Similarly, do the same thing for BG using a
generating set TG so that BG has presentation B = 〈T |U〉.

(e) From the definition of presentation, observe that while A and AG are isomorphic
groups, they are not “equal.” In particular, we may assume that S ∪S−1 and T ∪T−1
are disjoint. Let φA : A → AG and φB : B → BG be the group isomorphisms (taking
S to SG, etc.). Let H = φ−1A (HG) be the preimage of HG. Define φ : H → B by

φ = φ−1B ◦ φA. Explain why φ is a well-defined group homomorphism, so that we may
consider the group G′ = A ∗H B.

(f) Define ψ : G′ → G by taking SG to S and TG to T and then extending over words.
Prove that ψ is a well-defined group isomorphism. (You do not have to give full details.)
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