Topics in Algebra

Scott Taylor

HW 4: Practice with Generators and Relations

Read Scott's notes on finding a presentation for D_{∞}.

The purpose of this assignment is to have you do something similar with a group that shows up in topology. In order to emphasize the techniques of this course, we won't explain where this group comes from right now.
Define functions $A, B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by:

$$
\begin{aligned}
& A(x, y)=(x+1, y) \\
& B(x, y)=(-x, y+1)
\end{aligned}
$$

Notice that both A and B are isometries of the Euclidean plane. Let K be the group generated by A and B. That is K consists of all possible compositions of a finite number of compositions of A, B, A^{-1}, and B^{-1}. Observe that K is an infinite group since $A^{n}(x, y)=(x+n, y)$ for all $n \in \mathbb{Z}$, so A has infinite order. For $f, g \in K$, we let $f \cdot g=g \circ f$, and consider • as the group operation on K. (In other words, we reverse the order in which we write function composition.)
(1) In the paragraph above, we showed that A has infinite order. Now show that B also has infinite order. In the process, work out a formula for B^{n} for any $n \in \mathbb{Z}$.
(2) Explain why $S^{\prime}=\left\{A \cdot B, B, B^{-1} \cdot A^{-1}, B^{-1}\right\}$ is also a generating set for K. This generating set will be used in a few questions to make life a bit easier. Set $C=A \cdot B$.
(3) Let Γ be the integer lattice in \mathbb{R}^{2}, having vertices consisting of all points $(a, b) \in \mathbb{Z}^{2}$ and edges of the form (a, b) with either a or b an integer. Notice that K acts of Γ.
(a) Find a fundamental domain for the action of K on Γ.
(b) What generating set for K does your fundamental domain produce (as in Meier Theorem 1.55)?
(4) Use the "Drawing Trick" described by Meier (Remark 1.49, page 25) to draw a Cayley graph for K using generating set $S=\left\{A^{ \pm 1}, B^{ \pm 1}\right\}$.
(5) Use your Cayley Graph from the previous problem to guess some relations (expressed in terms of the generating set $\left.\left\{A^{ \pm 1}, B^{ \pm 1}\right\}\right)$.
(6) Let $G^{\prime}=\left\langle c, b \mid c^{2} b^{-2}\right\rangle$. Note that the equation $c^{2} b^{-2}=\mathbb{1}$ can be rewritten as $c^{2}=b^{2}$. Show that every element of G^{\prime} can be written in one of the following forms:

$$
c^{n_{1}} b^{ \pm 1} c^{n_{2}} b^{ \pm 1} c^{n_{3}} b^{ \pm 1} \cdots c^{n_{k}}
$$

where n_{1} or n_{k} can be 0 , but all other n_{i} are non-zero integers. This expression is unique but you don't have to prove it (even though you could).
(7) Explain why $C^{2} \cdot B^{-2}=\mathbb{1}$ in G.
(8) Define $\psi: K \rightarrow G^{\prime}$ as follows. Let $\psi(C)=c$ and $\psi(B)=b$ and extend to be a homomorphism using the fact that $\left\{C^{ \pm 1}, B^{ \pm 1}\right\}$ is a generating set for K. Show that K has presentation $\left\langle c, b \mid c^{2} b^{-2}\right\rangle$.
(9) Briefly explain why $\left\langle a, b \mid a b a b^{-1}\right\rangle$ is also a presentation for G^{\prime}. (Hint: set $c=a b$)

