Theorem (Frecudenthd- Hoof)
A f.g. group has $0,1,2$, or ally many ends.
poof Suppose the G is a group with ct least $k \geqslant 3$ ends. We will show it has at least $2 k-2$ ends. (And thus it must have ∞ lr mans eds.) Let P be a Cugler graph for G with respect to a finite generating sot S.
Let r_{1}, \ldots, r_{k} be rays based at $\mathbb{1} \in \Gamma$ representing distinct ends. Bydefinition, $\exists \rho>0$ s.t. $r_{1}(t), r_{2}(t), \ldots, r_{k}(t)$ lie in distinct components of $\Gamma \backslash \underbrace{B(\mathbb{1}, p)}$ for $t \gg 0$. Let Y_{K} be the close ball f radius P
centre at 11
component containing $r_{k}(t)$ for $t \gg 0$. It is in bounded since r_{k} isar racy. We may assure that the image of r_{i} is disjoint
$\frac{E x}{k=3}$

let $g \in Y_{k}$ be such that $d(\mathbb{1}, g)>2 p$
Notice that $g \cdot B(\mathbb{1}, \rho)=B(g, \rho)$ and

$$
B(\mathbb{1}, p) \cap B(g, \rho)=\varnothing
$$

The rays $\Gamma_{1}, \ldots, r_{k-1}$ all lie ina single unbounded component $b \Gamma \backslash B(g, \rho)$ as thegare disjoint from Mk and allstort at 11. Howur the actin of g on Γ is on isomeky so $\Gamma \backslash g \cdot B(\mathbb{1}, p)$ $=\Gamma \backslash B(g, p)$ has at least K un bounded components. one fthem contains r_{1}, \ldots, r_{F-1}. Tex are raps $r_{1}^{\prime}, \ldots, r_{k-1}^{\prime}$ in each f the other components basdat g. Those rags are all not equicalut to ans $f r_{1}, \ldots, r_{k-1}$ so there are at least $2(k-1)$ ends of Γ. Sue the next page fora picture.

