Topics in Algebra

Scott Taylor

Class Work 2: Free Groups

This is to be completed together as a class, to establish shared notation and terminology.

Let \mathcal{A} be a nonempty set, whose elements we call "letters" or "symbols" such that for each symbol $s \in \mathcal{A}$, the symbol $s^{-1} \notin \mathcal{A}$. We let \mathcal{A}^{-1} denote the set whose elements are the symbols s^{-1} for every $s \in \mathcal{A}$. Note that $\mathcal{A} \cap \mathcal{A}^{-1} = \emptyset$. Let $\mathcal{S} = \mathcal{A} \cup \mathcal{A}^{-1}$. The sets \mathcal{A} and \mathcal{S} are called **alphabets**. We sume that the symbol 1 is not an element of \mathcal{A} .

Check-in: If $\mathcal{A} = \{a, b\}$, what is \mathcal{A}^{-1} ?

Let $\mathcal{W} = \mathcal{W}(\mathcal{S})$ be the set whose elements are finite sequences of letters in \mathcal{S} , including the "empty sequence" which we denote by $\mathbb{1}$. The set \mathcal{W} is called the set of **words** in the alphabet \mathcal{S} . The set of words is also denoted \mathcal{S}^* . For $s \in \mathcal{S}$, we define the symbol $(s^{-1})^{-1}$ to be equal to s.

- (1) Let $\mathcal{A} = \{a, b, c\}$ and write down some elements of $\mathcal{S}^* = \mathcal{W}$. What is the cardinality of \mathcal{W} ?
- (2) Define multiplication in \mathcal{W} by concatenating words. Write down some examples of concatenation.
- (3) For the alphabet $\mathcal{A} = \{a, b\}$, explain why in \mathcal{W} it is **not** true that $abb^{-1}a = aa$.
- (4) Explain why multiplication in \mathcal{W} is associative and why $\mathbb{1}$ is the identity for multiplication.
- (5) Define a relation on \mathcal{W} by declaring: $w \sim w'$ if there exist $a, b \in \mathcal{W}$ and $x \in S$ so that: $w = axx^{-1}b$ and w' = ab or vice versa.

Prove that \sim is an equivalence relation.

- (6) A word w is **reduced** if there does not exist $a, b \in W$ and $x \in S$ with $w = axx^{-1}b$. Prove that given $w \in W$, there exists a unique reduced word $u \in W$ such that $w \sim u$.
- (7) For $w \in \mathcal{W}$, for now let [w] denote its equivalence class. Let $F(\mathcal{A})$ denote the set of equivalence classes of words. Define

$$[w][w'] = [ww']$$

Prove that this is a well defined operation that makes $F(\mathcal{A})$ into a group. It is called **the free group on** \mathcal{A} .