Topics in Algebra

Class Work 1

Scott Taylor

This is to be completed together as a class, to establish shared notation and terminology.

The dihedral group D_n is the group of symmetries of a regular *n*-gon. It consists of *n*-reflections and *n*-rotations. The group C_n is the group of rotations of the *n*-gon. It is a subgroup of D_n .

A set of elements $S \subset G$ of a group G generates G if every element of G is the product of elements of S and the inverses of the elements of S (allowing repetitions.). A nontrivial finite group is cyclic if it is has a generating set with a single element.

The order of a group is its cardinality. The order of a group element g is the smallest non-negative integer n such that $g^n = 1$.

1. Generators

- (1) Draw a regular octagon and label its reflections and rotations.
- (2) What rotations of the octagon generate C_8 ?
- (3) If S generates D_8 , is it possible that S contains only rotations?
- (4) Find a single rotation and a single reflection that generate D_8 .
- (5) Does every pair of rotation and reflection generate D_8 ? If not, what are the restrictions?
- (6) Find two reflections that generate D_8 and two reflections that do not generate D_8 .
- (7) How does the previous discussion change if 8 is changed to some other number?

2. Subgroups

If H is a subgroup of G, we write H < G. For $g \in G$, the **left coset** of g is

$$gH = \{gh | h \in H\}.$$

The set of left cosets is denoted G/H and is a partition of G (whether G is finite or infinite). The cardinality of G/H is denoted [G:H] and is called the **index** of H in G.

- (1) The group C_8 is a cyclic subgroup of D_8 . What are the other cyclic subgroups?
- (2) Show that D_4 is a subgroup of D_8 . Are there distinct subgroups of D_8 , each isomorphic to D_4 ?
- (3) Explain why if H < G and $h \in H$ then hH = H.
- (4) Do we remember Lagrange's Theorem for finite groups? Do we remember how to prove it?
- (5) Do this several times: Pick a subgroup $H < D_8$ and $g \in D_8$. Find the elements of the coset gH.
- (6) Explain why all subgroups of a cyclic group are cyclic.

3. The orbit-stabilizer theorem

Suppose that G is a subgroup of a group of symmetries of some object X. Recall that, among other things, this means that each element $g \in G$ is a function $g: X \to X$. Let $x \in X$. The **orbit** of x under G is the set of points in X that are the image of x under some symmetry in G.

$$ORB_G(x) = \{ y \in X : \exists g \in G \text{ s.t. } g(x) = y \}$$

The **stabilizer** of x under G is:

$$\operatorname{STAB}_G(x) = \{g \in G : g(x) = x\}.$$

We sometimes omit the G if it is clear from context.

- (1) Summarize the big difference between ORB(x) and STAB(x).
- (2) For different choices of n and different choices of point x in a regular n-gon (vertex, midpoint of an edge, non-midpoint of an edge), calculate $ORB_G(x)$ and $STAB_G(x)$ where $G = D_n$.
- (3) Show that there is a bijection between $G/\text{STAB}_G(x)$ and $\text{ORB}_G(x)$.
- (4) Prove:

Theorem (Orbit-Stabilizer theorem). If G is a subgroup of the group of symmetries of an object X and if $x \in X$, then

$$|G| = |\operatorname{STAB}_G(x)||\operatorname{ORB}_G(x)|.$$

- (5) Use the orbit-stabilizer theorem to compute the order of the group of orientation-preserving symmetries of the dodecahedron.
- (6) Suppose that G is a subgroup of a group of symmetries of an object X. Let $\mathcal{O} = \{ ORB_G(x) : x \in X \}$. Prove that \mathcal{O} is a partition of X. In particular, if X is finite, then

$$|X| = \sum_{O \in \mathcal{O}} |O|$$

(7) Recall that a permutation of a set X is just another word for a bijection $X \to X$. The permutations of any set X form a group. Ignoring all structure on X, we think of PERM(X) as the set of symmetries of X, thought of as just a set of points.

Prove:

Theorem (Cayley's Theorem). For every group G, there is a set X such that G is (isomorphic to) a subgroup of PERM(X).

(Hint: Set X = G. For each $g \in G$, let $m_g: X \to X$ be defined by $m_g(x) = gx$ (i.e. multiply g and x). Consider the map $g \mapsto m_g$.)

Definition 3.1. An action of a group G on an object X is a homomorphism $\phi: G \to \text{SYM}(X)$. It is faithful if it is injective (i.e. a monomorphism). The homomorphism is also called a **representation**. If G acts on X, we often write $G \curvearrowright X$. For $g \in G$ and $x \in X$, we often let $g \cdot x = \phi(g)(x)$, in which case it is a **left action** of G on X.

Cayley's theorem says that every group has a faithful action on itself. The Sylow theorems are important classical theorems concerning subgroups of a finite group of prime power. They are proved by studying orbits and stabilizers of elements of G under the left action of G on itself.