Thin If G acts freely on
$$E^n$$
 then
G is torsion-free.
Before prove this we exhabilish corre growthin facts.
Recall E^n is R^n with the Euclidistance
metric $d(x_{1:3}) = 1|x-y|$
Fact we won't prove : If $T: IE^n \rightarrow IE^n$ is an isometry
then for every line segment $L = IE^n - T(U)$ is also a line
segment.
Def. Suppose S is a finite set the
centroid is the point $\frac{1}{151} \sum x = C(S)$
Example () $C(S)$ is the midpt of the
line segment up end pts S
 S
 $C(S)$

Let
$$x \in S$$
. Then $C(S)$ lies on the line
segment with endpts $C(S(x))$ and X .
In fact,
 $C(S) = (1 - \frac{|S| - 1}{|S|}) \times + \frac{|S| - 1}{|S|} C(S(x))$

$$\frac{Proof}{(1 - \frac{|s| - 1}{|s|}) \times + \frac{|s| - 1}{|s|} c(s \times x) =$$

$$\frac{1}{|S|} \times + \frac{|S|-1}{|S|} \frac{c(S \setminus x)}{|S|} = \frac{1}{|S|} \left(\times + \frac{|S|-1}{1} \cdot \frac{1}{|S|-1} \frac{y_{e}}{|S|} \right) = \frac{1}{|S|} \left(\times + \frac{|S|-1}{1} \cdot \frac{1}{|S|-1} \frac{y_{e}}{|S|} + \frac{y_{e}}{|S|} \frac{y_{e}}{|S|} \right) = \frac{1}{|S|} \sum_{y \in S \setminus X} y_{e} = c(S).$$

Now we prove?

We prove the contrapositive. Suppose pf ge G has finite order. Let H L G be the subgroup granuled by q. that is $H = \{ 1, 3, 9^2, \dots, 9^{\text{ord}(q)-1} \}$ choose $x \in \mathbb{E}^n$ and let $S = \operatorname{orb}_{\mathcal{H}}(x)$ so |s| = order(q). let c(s) be the centroid of S. Notice that Yyes, YheH, y= gk.x h=gm for some K, m so h.y = g^mg^k x = g⁻x so hoyes. Since he G is an isometry, the function $\phi: S \Rightarrow S$ defined by $\phi(s) = h \cdot S$ is injective. Since S is finite, Q is a bijection. Thus, h.S=S for every hetl. Thus by our piculous work: $q \cdot c(s) = c(q; S) = c(s)$ so $q \in stab(c(s))$ temma q.5=5 Thus eith g= I or the action & G on IEn is not free. I

lemma let T: 1En > En be an isometry. If SCIEn is finite, then $T(c(s)) = c(\tau(s))$ (" isometries more centroids to certification") pf Number te elements of 5 as X1, X2, ..., Xn let Li be the line segment from X: to $c(\{x_{1},...,x_{i-3}\})$ for $z \leq i \leq n$ T takes L: to the line someth joining T(X:) and c(ET(Xi), T(X:-1)) As c(s) lies n-1 of the way along the live segment Ln, the result follows by induction on 151.