MA 262: Practice Exam 2
Name:

This practice exam is much longer than the actual exam.
(1) Let $\mathbf{x}(t)=(t \cos t, t \sin t)$ for $0 \leq t \leq 2 \pi$ and let $F(x, y)=(-y, x)$. Find $\int_{\mathbf{x}} F \cdot d \mathbf{s}$.
(2) The gravitation vector field in \mathbb{R}^{3} is $F(\mathbf{x})=-\mathbf{x} /\|\mathbf{x}\|^{3}$. Find an integral representing the amount of work done by gravity as an object moves through the vector field F along the path $\mathbf{x}(t)=(t \cos t, t \sin t, t)$ for $1 \leq t \leq 2 \pi$.
(3) Let $\mathbf{F}(x, y)=(x,-2 y)$.
(a) Sketch a portion of the vector field F.
(b) Sketch a flow line for the vector field starting at $(1,1)$.
(c) Find a parameterization for the flow line starting at $(1,1)$.
(d) The vector field F is a gradient field. Find the potential function.
(4) Let $F(x, y)=\left(2 x y, x^{2}+1\right)$. Find a potential function for F.
(5) Explain why flow lines for an everywhere non-zero gradient field never close up. Use this to prove that $\mathbf{F}(x, y)=(-y, x)$ is not a gradient field.
(6) Suppose that $\mathbf{F}=\nabla f$ is a C^{1} gradient field on a region U. Suppose that $\gamma:[a, b] \rightarrow U$ is a C^{1} path. Prove the Fundamental Theorem of Conservative Vector Fields which says that

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}=f(\gamma(b))-f(\gamma(a)) .
$$

(7) Let $f(x, y)=y e^{x}$. Find the gradient of f.
(8) Let $\mathbf{F}(x, y, z)=\left(y e^{x}, x e^{y^{2}}, z x\right)$. Find the divergence of \mathbf{F}.
(9) Let $\mathbf{F}(x, y, z)=\left(x y z, x e^{y} \ln (z), x^{2}+y^{2}+z^{2}\right)$. Find the curl of \mathbf{F}.
(10) Find the curl of your answer to problem 7.
(11) Find the divergence of your answer to problem 9.
(12) Let \mathbf{F} be a \mathbf{C}^{1} vector field. State the integral definition of the scalar curl of \mathbf{F} at a point a and prove that it gives the same answer as the derivative definition for vector fields of the form $\mathbf{F}=(M, 0)$. You need only consider curves that are squares centered at the point \mathbf{a}.
(13) Explain how to prove that if a vector field \mathbf{F} has path independent integrals on a region U then it is conservative.
(14) Give a complete, thorough statement of Green's theorem, including all the hypotheses on both the region and the vector field.
(15) Give a complete, thorough statement of the 2D divergence theorem, including all the hypotheses on both the region and the vector field.
(16) Prove that an irrotational vector field \mathbf{F} (that is a vector field \mathbf{F} with scalar curl equal to 0) on a simply connected region U is conservative.
(17) Let C be the unit circle centered at the origin in \mathbb{R}^{2}. Calculate the flux of $\mathbf{F}(x, y)=$ $\left(x y, x+y^{2}\right)$ across C and also the circulation of \mathbf{F} around C.
(18) Let C_{1} be a square in \mathbb{R}^{2} centered at the origin and with side length 2 and sides parallel to the axes. Let C_{2} be the unit circle centered at the origin. Orient both C_{1} and C_{2} counterclockwise. Let $\mathbf{F}(x, y)=(2 x-5 y, x+3 y+5)$. Compute both $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}$ and $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}$.
(19) Let R be the region enclosed by the curve with parameterization $\gamma(t)=\binom{\cos (t+\pi) \sin (t)}{\sin (3 t)}$ for $t \in[0, \pi]$. It is shown below. Write down an integral a Calc 1 student would understand that is equal to the area of R.

