MA 262: Review 3 Name:

This review concerns the mean value theorems for integrals and derivatives. Here are there statements:

Theorem (MVT for Derivatives). Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous and that it is differentiable on (a, b). Then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem (MVT for Integrals). Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then there exists $c \in[a, b]$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

(1) Let $f(x)=x^{2}$ for $x \in[0,2]$. What does the mean value theorem for derivatives say when applied to f ?
(2) Let $f(x)=x^{2}$ for $x \in[0,2]$. What does the mean value for integrals say when applied to f ?
(3) What does the mean value theorem for integrals say about the expression:

$$
\frac{1}{b-a} \int_{a}^{b} g(x) d x ?
$$

(4) What does the mean value theorem for derivatives say about the expression:

$$
\frac{g(2,3)-g(2,1)}{3-1}
$$

assuming that $g(x, y)$ is C^{1} at all $(x, y) \in \mathbb{R}^{2}$ such that $0 \leq x \leq 2$ and $1 \leq y \leq 3$?

