MA 262: Review 1 Name:

This review concerns the notion of linear (or affine) approximation. You may wish to review this concept in a Calculus 1 or 2 book before attempting these problems. Answer these questions on a separate sheet of paper.
(1) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sin x$.
(a) Find the equation of the line tangent to the graph of f at the point $(\pi / 4, \sqrt{2} / 2)$.
(b) Find a linear (technically "affine") function $L: \mathbb{R} \rightarrow \mathbb{R}$ such that L is a "good approximation" to f near $x=\pi / 4$.
(c) Use your answer to the previous part to find an approximation to $\sin (\pi / 5)$, without using a calculator.
(2) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a point $a \in \mathbb{R}$. What is the general equation of the linear (or affine) approximation to f at $x=a$?
(3) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=y e^{x}$.
(a) Find the equation of the plane tangent to the graph of f at the point $(1,2)$.
(b) Find a linear (or affine) function $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that L is a "good approximation" to f near $(x, y)=(1,2)$.
(c) Use your answer to the the previous part to find an approximation to $2.3 e^{1.0005}$.
(4) What is the general form of a linear approximation to a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at a point $(a, b) \in \mathbb{R}^{2}$?

