\qquad

This practice exam is much longer than the actual exam.
(1) Let $\mathbf{x}(t)=(t \cos t, t \sin t)$ for $0 \leq t \leq 2 \pi$ and let $F(x, y)=(-y, x)$. Find $\int_{\mathbf{x}} F \cdot d \mathbf{s}$.
(2) The gravitation vector field in \mathbb{R}^{3} is $F(\mathbf{x})=-\mathbf{x} /\|\mathbf{x}\|^{3}$. Find an integral representing the amount of work done by gravity as an object moves through the vector field F along the path $\mathbf{x}(t)=(t \cos t, t \sin t, t)$ for $1 \leq t \leq 2 \pi$.

Solution: We need only compute:

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{1}^{2 \pi} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t
$$

We have:

$$
\mathbf{F}(\mathbf{x}(t))=\left(\begin{array}{c}
\left.-(t \cos t) /\left((t \cos t)^{2}+(t \sin t)^{2}+t^{2}\right)^{3 / 2}\right) \\
\left.-(t \sin t) /\left((t \cos t)^{2}+(t \sin t)^{2}+t^{2}\right)^{3 / 2}\right) \\
\left.-(t) /\left((t \cos t)^{2}+(t \sin t)^{2}+t^{2}\right)^{3 / 2}\right)
\end{array}\right)
$$

and

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{c}
\cos t-t \sin t \\
\sin t+t \cos t \\
1
\end{array}\right)
$$

So the integral we need to compute is:

$$
\int_{0}^{2 \pi}-\frac{1}{\left.\left((t \cos t)^{2}+(t \sin t)^{2}+t^{2}\right)^{3 / 2}\right)}(t \cos t(\cos t-t \sin t)+t \sin t(\sin t+t \cos t)+t) d t
$$

Notice, however, that if we were actually interested in the answer, we could use the fact that \mathbf{F} is conservative and just plug in the endpoints of the path to the potential function.
(3) Let $\mathbf{F}(x, y)=(x,-2 y)$.
(a) Sketch a portion of the vector field F.
(b) Sketch a flow line for the vector field starting at $(1,1)$.
(c) Find a parameterization for the flow line starting at $(1,1)$.

Solution: We need to find functions $\gamma(t)=(x(t), y(t))$ so that $\mathbf{F}(\gamma(t))=\gamma^{\prime}(t)$. That is, $x^{\prime}(t)=x(t)$ and $y^{\prime}(t)=2 y(t)$. Guessing, we see that we can use $x(t)=A e^{t}$ and $y(t)=B e^{2 t}$ for any $A, B \in \mathbb{R}$. We want the curve to go through $(1,1)$ at $t=0$, so we choose $A=1$ and $B=1$.
(d) The vector field F is a gradient field. Find the potential function.

Solution: Use $f(x, y)=\frac{1}{2} x^{2}-y^{2}$.
(4) Let $F(x, y)=\left(2 x y, x^{2}+1\right)$. Find a potential function for F.

Solution: Integrate $2 x y$ with respect to x to obtain $f(x, y)=x^{2} y+h(y)$ where $h(y)$ is any real valued differentiable function of y. Take the derivative with respect to y to get

$$
x^{2}+\frac{\partial}{\partial y} h(y)=x^{2}+1
$$

Thus, $h(y)=y+c$ for any constant c. We might as well choose $c=0$. So we find that $f(x, y)=x^{2} y+y$ is a potential function for \mathbf{F}.
(5) Explain why flow lines for an everywhere non-zero gradient field never close up. Use this to prove that $\mathbf{F}(x, y)=(-y, x)$ is not a gradient field.

Solution: If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a potential function, the fundamental theorem of conservative vector fields says

$$
\int_{\gamma} \nabla f \cdot d \mathbf{s}=f(\mathrm{end})-f(\text { start })
$$

where start and end are the start and end points of γ. Thus, if γ is a closed loop, $\int_{\gamma} \nabla f \cdot d \mathbf{s}=0$.
(6) Suppose that $\mathbf{F}=\nabla f$ is a C^{1} gradient field on a region U. Suppose that $\gamma:[a, b] \rightarrow U$ is a C^{1} path. Prove the Fundamental Theorem of Conservative Vector Fields which says that

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}=f(\gamma(b))-f(\gamma(a))
$$

Solution: Suppose that $\mathbf{F}=\nabla f$ is a C^{1} conservative vector field. By the chain rule,

$$
\frac{d}{d t} f(\gamma(t))=D f(\gamma(t)) \gamma^{\prime}(t)
$$

Recall that since f is a scalar field, $D f$ is the transpose of ∇f, so

$$
\frac{d}{d t} f(\gamma(t))=\mathbf{F}(\gamma(t)) \cdot \gamma^{\prime}(t)
$$

Thus,

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\gamma(t)) \cdot \gamma^{\prime}(t) d t=\int_{a}^{b} \frac{d}{d t} f(\gamma(t)) d t
$$

By the fundamental theorem of calculus, this equals $f(\gamma(b))-f(\gamma(a))$ as desired.
(7) Let $f(x, y)=y e^{x}$. Find the gradient of f.

Solution: $\nabla f(x, y)=\binom{y e^{x}}{e^{x}}$.
(8) Let $\mathbf{F}(x, y, z)=\left(y e^{x}, x e^{y^{2}}, z x\right)$. Find the divergence of \mathbf{F}.

Solution:

$$
\operatorname{div} \mathbf{F}(x, y, z)=y e^{x}+2 y x e^{y^{2}}+x
$$

(9) Let $\mathbf{F}(x, y, z)=\left(x y z, x e^{y} \ln (z), x^{2}+y^{2}+z^{2}\right)$. Find the curl of \mathbf{F}.

Solution:

$$
\operatorname{curl} \mathbf{F}(x, y, z)=\left(\begin{array}{c}
2 y-x e^{y} / z \\
-(2 x-x z) \\
e^{y} \ln z-x z
\end{array}\right)
$$

(10) Find the curl of your answer to problem 7.

Solution: It is $(0,0,0)$ because the curl of every gradient field is zero.
(11) Find the divergence of your answer to problem 9.

Solution: It is 0 because the divergence of every rotational vector field is 0 .
(12) Let \mathbf{F} be a C^{1} vector field. State the integral definition of the scalar curl of \mathbf{F} at a point a and prove that it gives the same answer as the derivative definition for vector fields of the form $\mathbf{F}=(M, 0)$. You need only consider curves that are squares centered at the point \mathbf{a}.

Solution: Let C_{n} be the square of side length $2 / n$ centered at $\mathbf{a}=\left(a_{1}, a_{2}\right)$. The scalar curl of \mathbf{F} is defined to be:

$$
\lim \frac{1}{\operatorname{area}\left(C_{n}\right)} \int_{C_{n}} \mathbf{F} \cdot d \mathbf{s} .
$$

Notice the curves C_{n} enclose and converge to a. We orient each of them counterclockwise. The term area $\left(C_{n}\right)$ denotes the area enclosed by C_{n}. In this case, it is $4 / n^{2}$.

Assume that $\mathbf{F}=(M, 0)$. Notice that it is perpendicular to the vertical sides of C_{n}, so its integral over those sides will be 0 . We parametrize the other two sides as $\gamma(t)=\left(a_{1}+t, a_{2}-1 / n\right)$ and $\psi(t)=\left(a_{1}+t, a_{2}+1 / n\right)$, both for $t \in[-1 / n, 1 / n]$. Observe that $\gamma^{\prime}(t)=(1,0)$ and $\psi^{\prime}(t)=(1,0)$, so γ is parameterized in the correct direction and ψ in the wrong direction. Thus,

$$
\int_{C_{n}} \mathbf{F} \cdot d \mathbf{s}=\int_{-1 / n}^{1 / n} \mathbf{F}(\gamma(t)) \cdot\binom{1}{0}-\mathbf{F}(\psi(t)) \cdot\binom{1}{0} d t
$$

This equals

$$
\int_{-1 / n}^{1 / n} M\left(a_{1}+t, a_{2}-1 / n\right)-M\left(a_{1}+t, a_{2}+1 / n\right) d t .
$$

(13) Explain how to prove that if a vector field \mathbf{F} has path independent integrals on a region U then it is conservative.

Solution: We assume that U is path connected. If it isn't apply the following argument to each path-connected piece. Choose a basepoint $\mathbf{a} \in U$. For each $x \in U$, let γ_{x} be a piecewise \mathbf{C}^{1} path from a to x. Define $f(x)=\int_{\gamma_{x}} \mathbf{F} \cdot d \mathbf{s}$. Since \mathbf{F} has pathindependent integrals the value of $f(x)$ doesn't depend on what path we choose, only on our choice a and, of course, on x.

We then need to show that f is differentiable and that $\nabla f=\mathbf{F}$. To do this, suppose that $\mathbf{F}=(M, N)$. We show that $\frac{\partial}{\partial x} f=M$ and $\frac{\partial}{\partial x} f=N$. Since M and N are continuous on U, a theorem from MA 122 guarantees that f is differentiable and $\nabla f=\mathbf{F}$.

Let $e_{1}=(1,0)$ and $e_{2}=(0,1)$. By definition

$$
\frac{\partial}{\partial x} f(\mathbf{x})=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{x}+h e_{1}\right)-f(\mathbf{x})}{h}
$$

Choose a path $\gamma_{\mathbf{x}}$ from a to \mathbf{x}. Let $L(h)$ be a horizontal oriented line segment from \mathbf{x} to $\mathbf{x}+h e_{1}$. Let ψ be the path $\gamma_{\mathbf{x}}$ followed by the path $L(h)$. Then

$$
f(\mathbf{x})=\int_{\gamma_{\mathbf{x}}} \mathbf{F} \cdot d \mathbf{s}
$$

and

$$
f\left(\mathbf{x}+h e_{1}\right)=\int_{\psi} \mathbf{F} \cdot d \mathbf{s}=\int_{\gamma_{\mathbf{x}}} \mathbf{F} \cdot d \mathbf{s}+\int_{L(h)} \mathbf{F} \cdot d \mathbf{s}
$$

Thus,

$$
f\left(\mathbf{x}+h e_{1}\right)-f(x)=\int_{L(h)} \mathbf{F} \cdot d \mathbf{s}
$$

Notice that parameterize $L(h)$ by $\ell(t)=\mathbf{x}+t h e_{1}$ for $t \in[0,1]$. Then $\ell^{\prime}(t)=h e_{1}$. Thus,

$$
\frac{\partial}{\partial x} f(\mathbf{x})=\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{1} M(\ell(t)) h d t=\lim _{h \rightarrow 0} \int_{0}^{1} M(\ell(t)) d t
$$

By the Mean Value Theorem for Integrals, there exists $t^{*} \in[0,1]$ so that

$$
\int_{0}^{1} M(\ell(t)) d t=M\left(\ell\left(t^{*}\right)\right) .
$$

As $h \rightarrow 0$, by continuity of $M, M\left(\ell\left(t^{*}\right)\right) \rightarrow M(\ell(0))=M(\mathbf{x})$.
The computation for $\frac{\partial}{\partial y} f(\mathbf{x})=N(\mathbf{x})$ is similar.
(14) Give a complete, thorough statement of Green's theorem, including all the hypotheses on both the region and the vector field.
Solution: Suppose that $U \subset \mathbb{R}^{2}$ is open and that \mathbf{F} is a C^{1} vector field defined on U. Suppose that $D \subset U$ is a 2-dimensional region such that ∂D is a finite collection
of piecewise C^{1} simple closed curves, each oriented so that D is on the left. Then

$$
\int_{\partial D} \mathbf{F} \cdot d \mathbf{s}=\iint_{D} \operatorname{scurl} \mathbf{F} d A
$$

(15) Give a complete, thorough statement of the 2D divergence theorem, including all the hypotheses on both the region and the vector field.
Solution: Suppose that $U \subset \mathbb{R}^{2}$ is open and that \mathbf{F} is a C^{1} vector field defined on U. Suppose that $D \subset U$ is a 2 -dimensional region such that ∂D is a finite collection of piecewise C^{1} simple closed curves, each oriented so that D is on the left. Then

$$
\int_{\partial D} \mathbf{F} \cdot \mathbf{n} \cdot d s=\iint_{D} \operatorname{div} \mathbf{F} d A
$$

where \mathbf{n} is the obtained by rotating the unit tangent vector to the right by $\pi / 2$ radians (i.e. the outward pointing unit normal.)
(16) Prove that an irrotational vector field \mathbf{F} (that is a vector field \mathbf{F} with scalar curl equal to 0) on a simply connected region U is conservative.
Solution: We use Green's theorem. Let $C \subset U$ be a simple closed curve. Since U is simply connected, by the Jordan Curve Theorem, C bounds a region $D \subset U$. By Green's theorem (taking into account the orientation of C):

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}= \pm \int_{\partial D} \mathbf{F} \cdot d \mathbf{s}= \pm \iint_{D} \operatorname{scurl} \mathbf{F} d A= \pm \iint_{D} 0 d A=0 .
$$

Since the integral of \mathbf{F} around any simple closed curve is zero, we have theorem that tells us that \mathbf{F} must be conservative.
(17) Let C be the unit circle centered at the origin in \mathbb{R}^{2}. Calculate the flux of $\mathbf{F}(x, y)=$ $\left(x y, x+y^{2}\right)$ across C and also the circulation of \mathbf{F} around C.
Solution: Parameterize C by $C(t)=(\cos t, \sin t)$. Observe that $C^{\prime}(t)=(-\sin t, \cos t)$ and that the outward pointing unit normal is $\mathbf{n}(t)=(\cos (t), \sin (t))$. The flux of \mathbf{F} across C is

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s
$$

By the 2D divergence theorem, with D being the unit disc and $\operatorname{div} \mathbf{F}(x, y)=3 y$ we have the flux equal to

$$
\iint_{D} 3 y d A .
$$

Since the function $f(x, y)=y$ has the property that $f(-x,-y)=-f(x, y)$ and since D is symmetric across the origin, this integral equal zero.
The circulation of \mathbf{F} around C is given by the integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s} .
$$

By Green's theorem and the fact that scurl $\mathbf{F}(x, y)=1-x$ we have that circulation is equal to

$$
\iint_{D} \operatorname{scurl} 1-x d A=\iint_{D} 1 d A-\iint_{D} x d A
$$

The same symmetry argument as before shows that the second integral is zero, while the first integral is just the area of the disc. So the circulation of \mathbf{F} around C is 2π.
(18) Let C_{1} be a square in \mathbb{R}^{2} centered at the origin and with side length 2 and sides parallel to the axes. Let C_{2} be the unit circle centered at the origin. Orient both C_{1} and C_{2} counterclockwise. Let $\mathbf{F}(x, y)=(2 x-5 y, x+3 y+5)$. Compute both $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}$ and $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}$.
Solution: Observe that scurl $\mathbf{F}(x, y)=1+5=6$. Applying Green's theorem to the regions D_{1} and D_{2} bounded by C_{1} and C_{2} respectively shows that the integrals are 6π and 24 respectively.
(19) Let R be the region enclosed by the curve with parameterization $\gamma(t)=\binom{\cos (t+\pi) \sin (t)}{\sin (3 t)}$. It is shown below. Write down an integral a Calc 1 student would understand that is equal to the area of R.
Set $\mathbf{F}(x, y)=\binom{-y}{0}$ and observe that $\operatorname{scurl} \mathbf{F}(x, y)=1$. By Green's theorem, the area is

$$
\iint_{R} 1 d A=\iint_{R} \operatorname{scurl} \mathbf{F} d A= \pm \int_{\gamma} \mathbf{F} \cdot d \mathbf{s}
$$

where the \pm is determined by taking into account whether or not γ is oriented so that R is on its left.
Now $\mathbf{F}(\gamma(t))=(-\sin (3 t), 0)$ and $\gamma^{\prime}(t)=\binom{-\sin (t+\pi) \sin (t)+\cos (t+\pi) \cos (t)}{3 \cos (3 t)}$. Thus, the area is equal to

$$
\left|\int_{0}^{\pi}-\sin (3 t)(-\sin (t+\pi) \sin (t)+\cos (t+\pi) \cos (t)) d t\right|
$$

There are other possible solutions here, depending what vector field \mathbf{F} was chosen. If you are interested, the answer is $6 / 5$.

