MA 262: Practice Exam 2 Name:

This practice exam is much longer than the actual exam.

(1) Let x(t) = (tcost,tsint) for 0 < ¢ < 27 and let F(z,y) = (—y,z). Find [ F - ds.

(2) The gravitation vector field in R? is F'(x) = —x/||x||>. Find an integral representing
the amount of work done by gravity as an object moves through the vector field F'
along the path x(t) = (tcost,tsint,t) for 1 <t < 2.

Solution: We need only compute:

/F ds — /1% F(x(t)) - (1) dt.

X

We have:
—(tcost)/((tcost)? + (tsint)? + 12)%/?)
F(x(t)) = | —(tsint)/((tcost)? + (tsint)? + t2)3/?)
—(t)/((tcost)? + (tsint)? + 12)%/?)
and

cost —tsint
x'(t) = | sint + tcost
1

So the integral we need to compute is:

2

1
/_ ((tcost)? + (tsint)? + t2)3/2)

0

(tcost(cost — tsint) + tsint(sint + tcost) + t) dt.

Notice, however, that if we were actually interested in the answer, we could use the
fact that F is conservative and just plug in the endpoints of the path to the potential
function.

(a) Sketch a portion of the vector field F.

(b) Sketch a flow line for the vector field starting at (1, 1).

(c¢) Find a parameterization for the flow line starting at (1,1).

Solution: We need to find functions (t) = (x(t),y(t)) so that F(v(t)) = +'(¢).
That is, 2/(t) = x(t) and y'(t) = 2y(t). Guessing, we see that we can use
z(t) = Ae! and y(t) = Be? for any A, B € R. We want the curve to go through

(1,1) at t = 0, so we choose A =1and B = 1.
1



(4)

(d) The vector field F' is a gradient field. Find the potential function.
Solution: Use f(z,y) = s2% — y*.
Let F(z,y) = (2zy,2? + 1). Find a potential function for F.

Solution: Integrate 2zy with respect to x to obtain f(z,y) = z*y + h(y) where h(y)
is any real valued differentiable function of y. Take the derivative with respect to y
to get
2y 0 h(y) = 2% +1
T+ (9_y Yy)==zx .
Thus, h(y) = y + ¢ for any constant ¢. We might as well choose ¢ = 0. So we find
that f(z,y) = %y + y is a potential function for F.

Explain why flow lines for an everywhere non-zero gradient field never close up. Use
this to prove that F(z,y) = (—y,x) is not a gradient field.

Solution: If f: R? — R is a potential function, the fundamental theorem of conser-
vative vector fields says

/Vf -ds = f(end) — f(start),
Y

where start and end are the start and end points of . Thus, if v is a closed loop,

[Vf-ds=0.
5

Suppose that F = V f is a C! gradient field on a region U. Suppose that v: [a,b] — U
is a C! path. Prove the Fundamental Theorem of Conservative Vector Fields which
says that

/ F-ds = f(+(b)) — f(+(a)).

v

Solution: Suppose that F = Vf is a C! conservative vector field. By the chain rule,

d
2/ ((8) = DF(v()7'(0)-
Recall that since f is a scalar field, Df is the transpose of V f, so
d
o/ 0@0) =F(r (1) -7 (D).
Thus,

[Feis= [P vwa= [ Lo

v
By the fundamental theorem of calculus, this equals f(v(b)) — f(v(a)) as desired.

Let f(x,y) = ye®. Find the gradient of f.

Solution: Vf(z,y) = <yez)

a

€
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(9)

(10)

(11)

(12)

(13)

Let F(x,y, 2) = (ye®, ze¥”, zz). Find the divergence of F.

Solution:
divF(z,y,2) = ye* + 2yze? + 1

Let F(z,y,2) = (vyz, e’ In(2), 2? + y* + 2%). Find the curl of F.

Solution:
2y —xe¥/z
curl F(z,y,2) = | — (22 — z2)
eYInz —xz
Find the curl of your answer to problem 7.

Solution: It is (0,0,0) because the curl of every gradient field is zero.
Find the divergence of your answer to problem 9.
Solution: It is 0 because the divergence of every rotational vector field is 0.

Let F be a C! vector field. State the integral definition of the scalar curl of F at
a point a and prove that it gives the same answer as the derivative definition for
vector fields of the form F = (M, 0). You need only consider curves that are squares
centered at the point a.

Solution: Let C,, be the square of side length 2/n centered at a = (aj,as). The
scalar curl of F is defined to be:

1
lim ————— [ F-ds.
1m area(C,,) / ds

CTL

Notice the curves C), enclose and converge to a. We orient each of them counter-

clockwise. The term area(C,,) denotes the area enclosed by C,. In this case, it is
4/n?.

Assume that F = (M,0). Notice that it is perpendicular to the vertical sides of
C,, so its integral over those sides will be 0. We parametrize the other two sides as
Y(t) = (a1 + t,a2 — 1/n) and (t) = (a1 + t,az + 1/n), both for t € [—1/n,1/n].
Observe that ~/(t) = (1,0) and ¢'(t) = (1,0), so « is parameterized in the correct
direction and ¢ in the wrong direction. Thus,

1/n
s [ ra-(5) - pwo- (o)
Cn —1/n
This equals
1/n
M(ay +t,as —1/n) — M(a; +t,as + 1/n) dt.
—1/n

Explain how to prove that if a vector field F has path independent integrals on a
region U then it is conservative.
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Solution: We assume that U is path connected. If it isn’t apply the following
argument to each path-connected piece. Choose a basepoint a e U. For each x € U,

let 7, be a piecewise C! path from a to z. Define f(z) = [ F -ds. Since F has path-
Yz
independent integrals the value of f(x) doesn’t depend on what path we choose, only

on our choice a and, of course, on z.

We then need to show that f is differentiable and that Vf = F. To do this, suppose
that F = (M,N). We show that 2f = M and 2f = N. Since M and N are
continuous on U, a theorem from MA 122 guarantees that f is differentiable and
Vf=F.

Let e; = (1,0) and ey = (0, 1). By definition

D ) — g T he0) = 1)

ox h—0 h

Choose a path 74 from a to x. Let L(h) be a horizontal oriented line segment from
x to x + he;. Let ¢ be the path 74 followed by the path L(h). Then

ﬂ@:/Fds

o
and
f(x+hel):/F-ds:/F-ds+ F -ds
Y Yx L(h)

Thus,

f(x+hey) — f(z) = / F - ds.

L(h)

Notice that parameterize L(h) by £(t) = x + the; for t € [0,1]. Then ¢'(t) = he;.
Thus,

a 1

By the Mean Value Theorem for Integrals, there exists t* € [0, 1] so that

Lwamﬁ:Mmmy

As h — 0, by continuity of M, M (¢(t*)) — M (£(0)) = M (x).

The computation for a% f(x) = N(x) is similar.

Give a complete, thorough statement of Green’s theorem, including all the hypotheses
on both the region and the vector field.

Solution: Suppose that U C R? is open and that F is a C! vector field defined on

U. Suppose that D C U is a 2-dimensional region such that 0D is a finite collection
4
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of piecewise C! simple closed curves, each oriented so that D is on the left. Then

/F-ds://scurleA
D

oD

Give a complete, thorough statement of the 2D divergence theorem, including all the
hypotheses on both the region and the vector field.

Solution: Suppose that U C R? is open and that F is a C!' vector field defined on
U. Suppose that D C U is a 2-dimensional region such that 9D is a finite collection
of piecewise C! simple closed curves, each oriented so that D is on the left. Then

/F-n-ds://diVFdA
D

oD

where n is the obtained by rotating the unit tangent vector to the right by 7/2
radians (i.e. the outward pointing unit normal.)

Prove that an irrotational vector field F (that is a vector field F with scalar curl
equal to 0) on a simply connected region U is conservative.

Solution: We use Green’s theorem. Let C' C U be a simple closed curve. Since U
is simply connected, by the Jordan Curve Theorem, C' bounds a region D C U. By
Green’s theorem (taking into account the orientation of C):

/F-ds:i/F-ds:i//scurleA:j://OdA:O.
c D D

oD
Since the integral of F around any simple closed curve is zero, we have theorem that
tells us that F must be conservative.

Let C' be the unit circle centered at the origin in R?. Calculate the flux of F(z,y) =
(zy,z + y?) across C and also the circulation of F around C'.

Solution: Parameterize C by C(t) = (cost,sint). Observe that C’'(t) = (—sint, cost)
and that the outward pointing unit normal is n(t) = (cos(t),sin(¢)). The flux of F

across C' is
/F -nds.

c
By the 2D divergence theorem, with D being the unit disc and div F(z,y) = 3y we

have the flux equal to
/ / 3y dA.
D

Since the function f(z,y) = y has the property that f(—z, —y) = —f(z,y) and since
D is symmetric across the origin, this integral equal zero.

The circulation of F around C'is given by the integral

/F-ds.

C
5
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By Green’s theorem and the fact that scurl F(z,y) = 1 — 2 we have that circulation

is equal to
//scurll—di://ldA—//a:dA.
D D D

The same symmetry argument as before shows that the second integral is zero, while
the first integral is just the area of the disc. So the circulation of F around C is 2.

Let C} be a square in R? centered at the origin and with side length 2 and sides
parallel to the axes. Let Cy be the unit circle centered at the origin. Orient both C}

and C5 counterclockwise. Let F(z,y) = (2¢ — 5y, x + 3y +5). Compute both [ F-ds
C1
and [ F-ds.
Ca

Solution: Observe that scurl F(x,y) = 1+ 5 = 6. Applying Green’s theorem to the
regions Dy and Dy bounded by C) and C respectively shows that the integrals are
67 and 24 respectively.

Let R be the region enclosed by the curve with parameterization y(t) = sin(3t)

It is shown below. Write down an integral a Calc 1 student would understand that
is equal to the area of R.

0

//1dA://scurleA::|:/F~ds,
R R 8!

where the + is determined by taking into account whether or not ~ is oriented so
that Ris on its left.

Set F(z,y) = (—y) and observe that scurl F(x,y) = 1. By Green’s theorem, the

area is

Now F(v(t)) = (—sin(3t),0) and /() = <— sin(t + ) sig((f())s—i(—gi())s(t +7) cos(t))

Thus, the area is equal to
‘ / —sin(3t) ( — sin(t + 7) sin(t) + cos(t + ) cos(t)) dt’.
0

There are other possible solutions here, depending what vector field F was chosen.
If you are interested, the answer is 6/5.

cos(t + ) sin(t)

)



