MA 262: Practice Exam 2	Name:

This practice exam is much longer than the actual exam.

- (1) Let $\mathbf{x}(t) = (t \cos t, t \sin t)$ for $0 \le t \le 2\pi$ and let F(x, y) = (-y, x). Find $\int_{\mathbf{x}} F \cdot d\mathbf{s}$.
- (2) The gravitation vector field in \mathbb{R}^3 is $F(\mathbf{x}) = -\mathbf{x}/||\mathbf{x}||^3$. Find an integral representing the amount of work done by gravity as an object moves through the vector field F along the path $\mathbf{x}(t) = (t \cos t, t \sin t, t)$ for $1 \le t \le 2\pi$.

Solution: We need only compute:

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{1}^{2\pi} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) \, dt.$$

We have:

$$\mathbf{F}(\mathbf{x}(t)) = \begin{pmatrix} -(t\cos t)/((t\cos t)^2 + (t\sin t)^2 + t^2)^{3/2}) \\ -(t\sin t)/((t\cos t)^2 + (t\sin t)^2 + t^2)^{3/2}) \\ -(t)/((t\cos t)^2 + (t\sin t)^2 + t^2)^{3/2}) \end{pmatrix}$$

and

$$\mathbf{x}'(t) = \begin{pmatrix} \cos t - t \sin t \\ \sin t + t \cos t \\ 1 \end{pmatrix}$$

So the integral we need to compute is:

$$\int_{0}^{2\pi} -\frac{1}{((t\cos t)^{2} + (t\sin t)^{2} + t^{2})^{3/2})} (t\cos t(\cos t - t\sin t) + t\sin t(\sin t + t\cos t) + t) dt.$$

Notice, however, that if we were actually interested in the answer, we could use the fact that \mathbf{F} is conservative and just plug in the endpoints of the path to the potential function.

- (3) Let $\mathbf{F}(x, y) = (x, -2y)$.
 - (a) Sketch a portion of the vector field F.
 - (b) Sketch a flow line for the vector field starting at (1, 1).
 - (c) Find a parameterization for the flow line starting at (1, 1).

Solution: We need to find functions $\gamma(t) = (x(t), y(t))$ so that $\mathbf{F}(\gamma(t)) = \gamma'(t)$. That is, x'(t) = x(t) and y'(t) = 2y(t). Guessing, we see that we can use $x(t) = Ae^t$ and $y(t) = Be^{2t}$ for any $A, B \in \mathbb{R}$. We want the curve to go through (1, 1) at t = 0, so we choose A = 1 and B = 1. (d) The vector field F is a gradient field. Find the potential function.

Solution: Use $f(x, y) = \frac{1}{2}x^2 - y^2$.

(4) Let $F(x,y) = (2xy, x^2 + 1)$. Find a potential function for F.

Solution: Integrate 2xy with respect to x to obtain $f(x, y) = x^2y + h(y)$ where h(y) is any real valued differentiable function of y. Take the derivative with respect to y to get

$$x^2 + \frac{\partial}{\partial y}h(y) = x^2 + 1.$$

Thus, h(y) = y + c for any constant c. We might as well choose c = 0. So we find that $f(x, y) = x^2y + y$ is a potential function for **F**.

(5) Explain why flow lines for an everywhere non-zero gradient field never close up. Use this to prove that $\mathbf{F}(x, y) = (-y, x)$ is not a gradient field.

Solution: If $f: \mathbb{R}^2 \to \mathbb{R}$ is a potential function, the fundamental theorem of conservative vector fields says

$$\int_{\gamma} \nabla f \cdot d\mathbf{s} = f(\text{end}) - f(\text{start}),$$

where start and end are the start and end points of γ . Thus, if γ is a closed loop, $\int_{\gamma} \nabla f \cdot d\mathbf{s} = 0.$

(6) Suppose that $\mathbf{F} = \nabla f$ is a C¹ gradient field on a region U. Suppose that $\gamma : [a, b] \to U$ is a C¹ path. Prove the Fundamental Theorem of Conservative Vector Fields which says that

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = f(\gamma(b)) - f(\gamma(a)).$$

Solution: Suppose that $\mathbf{F} = \nabla f$ is a \mathbf{C}^1 conservative vector field. By the chain rule,

$$\frac{d}{dt}f(\gamma(t)) = Df(\gamma(t))\gamma'(t).$$

Recall that since f is a scalar field, Df is the transpose of ∇f , so

$$\frac{d}{dt}f(\gamma(t)) = \mathbf{F}(\gamma(t)) \cdot \gamma'(t).$$

Thus,

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\gamma(t)) \cdot \gamma'(t) \, dt = \int_{a}^{b} \frac{d}{dt} f(\gamma(t)) \, dt$$

By the fundamental theorem of calculus, this equals $f(\gamma(b)) - f(\gamma(a))$ as desired. (7) Let $f(x, y) = ye^x$. Find the gradient of f.

Solution: $\nabla f(x,y) = \begin{pmatrix} ye^x \\ e^x \end{pmatrix}$.

(8) Let $\mathbf{F}(x, y, z) = (ye^x, xe^{y^2}, zx)$. Find the divergence of \mathbf{F} . Solution:

$$\operatorname{div} \mathbf{F}(x, y, z) = ye^{x} + 2yxe^{y^{2}} + x$$

(9) Let $\mathbf{F}(x, y, z) = (xyz, xe^y \ln(z), x^2 + y^2 + z^2)$. Find the curl of \mathbf{F} . Solution:

$$\operatorname{curl} \mathbf{F}(x, y, z) = \begin{pmatrix} 2y - xe^{y}/z \\ -(2x - xz) \\ e^{y} \ln z - xz \end{pmatrix}$$

(10) Find the curl of your answer to problem 7.

Solution: It is (0,0,0) because the curl of every gradient field is zero.

(11) Find the divergence of your answer to problem 9.

Solution: It is 0 because the divergence of every rotational vector field is 0.

(12) Let \mathbf{F} be a C¹ vector field. State the integral definition of the scalar curl of \mathbf{F} at a point \mathbf{a} and prove that it gives the same answer as the derivative definition for vector fields of the form $\mathbf{F} = (M, 0)$. You need only consider curves that are squares centered at the point \mathbf{a} .

Solution: Let C_n be the square of side length 2/n centered at $\mathbf{a} = (a_1, a_2)$. The scalar curl of \mathbf{F} is defined to be:

$$\lim \frac{1}{\operatorname{area}(C_n)} \int\limits_{C_n} \mathbf{F} \cdot d\mathbf{s}.$$

Notice the curves C_n enclose and converge to **a**. We orient each of them counterclockwise. The term $\operatorname{area}(C_n)$ denotes the area enclosed by C_n . In this case, it is $4/n^2$.

Assume that $\mathbf{F} = (M, 0)$. Notice that it is perpendicular to the vertical sides of C_n , so its integral over those sides will be 0. We parametrize the other two sides as $\gamma(t) = (a_1 + t, a_2 - 1/n)$ and $\psi(t) = (a_1 + t, a_2 + 1/n)$, both for $t \in [-1/n, 1/n]$. Observe that $\gamma'(t) = (1, 0)$ and $\psi'(t) = (1, 0)$, so γ is parameterized in the correct direction and ψ in the wrong direction. Thus,

$$\int_{C_n} \mathbf{F} \cdot d\mathbf{s} = \int_{-1/n}^{1/n} \mathbf{F}(\gamma(t)) \cdot \begin{pmatrix} 1\\ 0 \end{pmatrix} - \mathbf{F}(\psi(t)) \cdot \begin{pmatrix} 1\\ 0 \end{pmatrix} dt.$$

This equals

$$\int_{-1/n}^{1/n} M(a_1 + t, a_2 - 1/n) - M(a_1 + t, a_2 + 1/n) dt$$

(13) Explain how to prove that if a vector field \mathbf{F} has path independent integrals on a region U then it is conservative.

Solution: We assume that U is path connected. If it isn't apply the following argument to each path-connected piece. Choose a basepoint $\mathbf{a} \in U$. For each $x \in U$, let γ_x be a piecewise C^1 path from \mathbf{a} to x. Define $f(x) = \int_{\gamma_x} \mathbf{F} \cdot d\mathbf{s}$. Since \mathbf{F} has path-independent integrals the value of f(x) doesn't depend on what path we choose, only

We then need to show that f is differentiable and that $\nabla f = \mathbf{F}$. To do this, suppose that $\mathbf{F} = (M, N)$. We show that $\frac{\partial}{\partial x}f = M$ and $\frac{\partial}{\partial x}f = N$. Since M and N are continuous on U, a theorem from MA 122 guarantees that f is differentiable and $\nabla f = \mathbf{F}$.

Let $e_1 = (1, 0)$ and $e_2 = (0, 1)$. By definition

on our choice \mathbf{a} and, of course, on x.

$$\frac{\partial}{\partial x}f(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + he_1) - f(\mathbf{x})}{h}.$$

Choose a path $\gamma_{\mathbf{x}}$ from **a** to **x**. Let L(h) be a horizontal oriented line segment from **x** to $\mathbf{x} + he_1$. Let ψ be the path $\gamma_{\mathbf{x}}$ followed by the path L(h). Then

$$f(\mathbf{x}) = \int_{\gamma_{\mathbf{x}}} \mathbf{F} \cdot d\mathbf{s}$$

and

$$f(\mathbf{x} + he_1) = \int_{\psi} \mathbf{F} \cdot d\mathbf{s} = \int_{\gamma_{\mathbf{x}}} \mathbf{F} \cdot d\mathbf{s} + \int_{L(h)} \mathbf{F} \cdot d\mathbf{s}$$

Thus,

$$f(\mathbf{x} + he_1) - f(x) = \int_{L(h)} \mathbf{F} \cdot d\mathbf{s}.$$

Notice that parameterize L(h) by $\ell(t) = \mathbf{x} + the_1$ for $t \in [0, 1]$. Then $\ell'(t) = he_1$. Thus,

$$\frac{\partial}{\partial x}f(\mathbf{x}) = \lim_{h \to 0} \frac{1}{h} \int_0^1 M(\ell(t))h \, dt = \lim_{h \to 0} \int_0^1 M(\ell(t)) \, dt$$

By the Mean Value Theorem for Integrals, there exists $t^* \in [0, 1]$ so that

$$\int_0^1 M(\ell(t)) \, dt = M(\ell(t^*)).$$

As $h \to 0$, by continuity of M, $M(\ell(t^*)) \to M(\ell(0)) = M(\mathbf{x})$.

The computation for $\frac{\partial}{\partial u} f(\mathbf{x}) = N(\mathbf{x})$ is similar.

(14) Give a complete, thorough statement of Green's theorem, including all the hypotheses on both the region and the vector field.

Solution: Suppose that $U \subset \mathbb{R}^2$ is open and that **F** is a C¹ vector field defined on U. Suppose that $D \subset U$ is a 2-dimensional region such that ∂D is a finite collection

of piecewise C^1 simple closed curves, each oriented so that D is on the left. Then

$$\int_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} \operatorname{scurl} \mathbf{F} \, dA$$

(15) Give a complete, thorough statement of the 2D divergence theorem, including all the hypotheses on both the region and the vector field.

Solution: Suppose that $U \subset \mathbb{R}^2$ is open and that **F** is a C¹ vector field defined on U. Suppose that $D \subset U$ is a 2-dimensional region such that ∂D is a finite collection of piecewise C¹ simple closed curves, each oriented so that D is on the left. Then

$$\int_{\partial D} \mathbf{F} \cdot \mathbf{n} \cdot ds = \iint_{D} \operatorname{div} \mathbf{F} \, dA$$

where **n** is the obtained by rotating the unit tangent vector to the right by $\pi/2$ radians (i.e. the outward pointing unit normal.)

(16) Prove that an irrotational vector field \mathbf{F} (that is a vector field \mathbf{F} with scalar curl equal to 0) on a simply connected region U is conservative.

Solution: We use Green's theorem. Let $C \subset U$ be a simple closed curve. Since U is simply connected, by the Jordan Curve Theorem, C bounds a region $D \subset U$. By Green's theorem (taking into account the orientation of C):

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \pm \int_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \pm \iint_{D} \operatorname{scurl} \mathbf{F} dA = \pm \iint_{D} 0 \, dA = 0.$$

Since the integral of \mathbf{F} around any simple closed curve is zero, we have theorem that tells us that \mathbf{F} must be conservative.

(17) Let C be the unit circle centered at the origin in \mathbb{R}^2 . Calculate the flux of $\mathbf{F}(x, y) = (xy, x + y^2)$ across C and also the circulation of **F** around C.

Solution: Parameterize C by $C(t) = (\cos t, \sin t)$. Observe that $C'(t) = (-\sin t, \cos t)$ and that the outward pointing unit normal is $\mathbf{n}(t) = (\cos(t), \sin(t))$. The flux of \mathbf{F} across C is

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds.$$

By the 2D divergence theorem, with D being the unit disc and div $\mathbf{F}(x, y) = 3y$ we have the flux equal to

$$\iint_D 3y \, dA.$$

Since the function f(x, y) = y has the property that f(-x, -y) = -f(x, y) and since D is symmetric across the origin, this integral equal zero.

The circulation of \mathbf{F} around C is given by the integral

$$\int_{C} \mathbf{F} \cdot d\mathbf{s}.$$

By Green's theorem and the fact that scurl $\mathbf{F}(x, y) = 1 - x$ we have that circulation is equal to

$$\iint_{D} \operatorname{scurl} 1 - x \, dA = \iint_{D} 1 \, dA - \iint_{D} x \, dA.$$

The same symmetry argument as before shows that the second integral is zero, while the first integral is just the area of the disc. So the circulation of \mathbf{F} around C is 2π .

(18) Let C_1 be a square in \mathbb{R}^2 centered at the origin and with side length 2 and sides parallel to the axes. Let C_2 be the unit circle centered at the origin. Orient both C_1 and C_2 counterclockwise. Let $\mathbf{F}(x, y) = (2x - 5y, x + 3y + 5)$. Compute both $\int_{C_1} \mathbf{F} \cdot d\mathbf{s}$

and
$$\int_{C_2} \mathbf{F} \cdot d\mathbf{s}$$

Solution: Observe that scurl $\mathbf{F}(x, y) = 1 + 5 = 6$. Applying Green's theorem to the regions D_1 and D_2 bounded by C_1 and C_2 respectively shows that the integrals are 6π and 24 respectively.

(19) Let *R* be the region enclosed by the curve with parameterization $\gamma(t) = \begin{pmatrix} \cos(t+\pi)\sin(t)\\\sin(3t) \end{pmatrix}$. It is shown below. Write down an integral a Calc 1 student would understand that

is equal to the area of R.

Set $\mathbf{F}(x,y) = \begin{pmatrix} -y \\ 0 \end{pmatrix}$ and observe that scurl $\mathbf{F}(x,y) = 1$. By Green's theorem, the area is $\iint \mathbf{I} dA = \iint \operatorname{scurl} \mathbf{F} dA = \pm \int \mathbf{F} d\mathbf{F}$

$$\iint_{R} 1 \, dA = \iint_{R} \operatorname{scurl} \mathbf{F} \, dA = \pm \int_{\gamma} \mathbf{F} \cdot d\mathbf{s},$$

where the \pm is determined by taking into account whether or not γ is oriented so that *R* is on its left.

Now
$$\mathbf{F}(\gamma(t)) = (-\sin(3t), 0)$$
 and $\gamma'(t) = \begin{pmatrix} -\sin(t+\pi)\sin(t) + \cos(t+\pi)\cos(t) \\ 3\cos(3t) \end{pmatrix}$.

Thus, the area is equal to

$$\Big|\int_0^{\pi} -\sin(3t)\big(-\sin(t+\pi)\sin(t)+\cos(t+\pi)\cos(t)\big)\,dt\Big|.$$

There are other possible solutions here, depending what vector field \mathbf{F} was chosen. If you are interested, the answer is 6/5.