\qquad

This practice exam is much longer than the actual exam.
(1) Let $F(x, y)=\left(x^{2} y, y^{2} x, 3 x-2 y x\right)$. Find the derivative of F.

Solution:

$$
D F(x, y)=\left(\begin{array}{cc}
2 x y & x^{2} \\
y^{2} & 2 y x \\
3-2 y & -2 x
\end{array}\right)
$$

(2) Let $F(x, y)=(x-y, x+y)$ and let $G(x, y)=(x \cos y, x \sin y)$. Find the derivative of $F \circ G$ using the chain rule.

Solution:

$$
\begin{aligned}
D F(x, y) & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
D G(x, y) & =\left(\begin{array}{cc}
\cos y & -x \sin y \\
\sin y & x \cos y
\end{array}\right) \\
D(F \circ G)(x, y) & =D F(G(x, y)) D G(x, y) \\
& =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\cos y & -x \sin y \\
\sin y & x \cos y
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos y-\sin y & -x \sin y-x \cos y \\
\cos y+\sin y & -x \sin y+x \cos y
\end{array}\right)
\end{aligned}
$$

(3) Suppose that a rotating circle of radius 1 is travelling through the plane, so that at time t seconds the center of the circle is at the point $(t, \sin t)$. Let P be the point on the circle which is at $(0,1)$ at time $t=0$. If the circle makes 3 revolutions per second, what is the path $\mathbf{x}(t)$ taken by the point P ?

Solution: The rotation of the P relative to the center of the circle (that is, in $T_{\mathbf{c}(t)}$) can be described by the path $(\cos (6 \pi t+\pi / 2), \sin (6 \pi t+\pi / 2))$. Thus, $\mathbf{x}(t)=(\cos (6 \pi t+\pi / 2)+$ $t, \sin (6 \pi t+\pi / 2)+\sin t)$.
(4) A rotating circle of radius 1 follows a helical path in \mathbb{R}^{3} so that at time t the center of the circle is at $(\sin t, \cos t, t)$. At each time t, the circle lies in the osculating plane. (That is, the circle lies in the plane spanned by the unit tangent and the unit normal vectors.) Let P be the point on the circle which is at $(1,0)$ at time $t=0$. The circle completes one rotation every 2π seconds. Find a formula $\mathbf{x}(t)$ for the path taken by the point P. (Hint: Express the center of the circle as a combination of the unit tangent and normal vectors.)

Solution: Relative to the center of the circle (that is, in $T_{\mathbf{c}(t)}$) the point P follows the path $\cos t \mathbf{T}+\sin t \mathbf{N}$ where \mathbf{T} and \mathbf{N} are the unit tangent and unit normal vectors to $\mathbf{c}(t)=$ $(\sin t, \cos t, t)$ respectively. Those formulae are

$$
\begin{aligned}
& \mathbf{T}(t)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\cos t \\
-\sin t \\
1
\end{array}\right) \\
& \mathbf{N}(t)=\left(\begin{array}{c}
-\sin t \\
-\cos t \\
0
\end{array}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mathbf{c}(t) & =\cos t \mathbf{T}+\sin t \mathbf{N}+\mathbf{c}(t) \\
& =\frac{\cos t}{\sqrt{2}}\left(\begin{array}{c}
\cos t \\
-\sin t \\
1
\end{array}\right)+\sin t\left(\begin{array}{c}
-\sin t \\
-\cos t \\
0
\end{array}\right)+\left(\begin{array}{c}
\sin t \\
\cos t \\
t
\end{array}\right) .
\end{aligned}
$$

(5) Use the Mean Value Theorem to explain the relationship between calculating arc length of a \mathbf{C}^{1} curve $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ by taking the limit of polygonal approximations and the integral $\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t$.
Solution: Subdivide the interval $[a, b]$ using

$$
a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b .
$$

Assume, for convenience that they are equally spaced so that $t_{i+1}-t_{i}=\Delta t$ for every i. The points $\gamma\left(t_{i}\right)$ lie on the curve and $\left\|\gamma\left(t_{i+1}\right)-\gamma\left(t_{i}\right)\right\|$ is the length of the line segment between $\gamma\left(t_{i+1}\right)$ and $\gamma\left(t_{i}\right)$. As $\Delta t \rightarrow 0$ (equivalently as $n \rightarrow \infty$) the union of those line segments approaches the curve. The length of the curve is then

$$
\lim _{\Delta t \rightarrow 0} \sum_{i=0}^{i=1}\left\|\gamma\left(t_{i+1}\right)-\gamma\left(t_{i}\right)\right\| .
$$

Write $\gamma(t)=(x(t), y(t))$. Since x and y are \mathbf{C}^{1} functions, by the mean value theorem there exist $t_{i}^{*}, t_{i}^{* *} \in\left[t_{i}, t_{i+1}\right]$ so that

$$
\begin{aligned}
x^{\prime}\left(t_{i}^{*}\right) \Delta t & =x\left(t_{i+1}\right)-x\left(t_{i}\right) \\
y^{\prime}\left(t_{i}^{* *}\right) \Delta t & =y\left(t_{i+1}\right)-y\left(t_{i}\right)
\end{aligned}
$$

Thus,

$$
\left\|\gamma\left(t_{i+1}\right)-\gamma\left(t_{i}\right)\right\|=\|\left(x^{\prime}\left(t_{i}^{*}\right), y^{\prime}\left(t_{i}^{* *}\right) \| \Delta t\right.
$$

As $\Delta \rightarrow 0$, we have $t_{i}^{*}, t_{i}^{* *} \rightarrow t_{i}$. Assuming that they converge faster than the sum of the errors accumulates, we have:

$$
\lim _{\Delta t \rightarrow 0} \sum_{i=0}^{i=1}\left\|\gamma\left(t_{i+1}\right)-\gamma\left(t_{i}\right)\right\|=\lim _{\Delta t \rightarrow 0} \sum_{i=0}^{i=1}\left\|\gamma^{\prime}\left(t_{i}\right)\right\| \Delta t
$$

We recognize this latter quantity as a Riemann sum and so the length of γ is equal to

$$
\int_{a}^{b}\left\|\gamma_{2}^{\prime}(t)\right\| d t
$$

(6) Explain what it means for curvature to be an intrinsic quantity.

Solution: The curvature of a path $\mathbf{x}(t)$ at t_{0}, depends only on the curve itself at t_{0}, not on the parameterization \mathbf{x}.
(7) Prove that the curvature at any point of a circle of radius r is $1 / r$.

Solution: A circle of radius r can be parameterized as $\mathbf{x}(t)=(r \cos t, r \sin t)$ for $0 \leq t \leq$ 2π. We have:

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =(-r \sin t, r \cos t) \\
\left\|\mathbf{x}^{\prime}(t)\right\| & =r \\
\mathbf{T} & =(-\sin t, \cos t) \\
\mathbf{T}^{\prime} & =(-\cos t,-\sin t) \\
\left\|\mathbf{T}^{\prime}\right\| & =1 \\
\kappa(t) & =\left\|\mathbf{T}^{\prime}\right\| /\left\|\mathbf{x}^{\prime}\right\| \\
& =1 / r .
\end{aligned}
$$

(8) Prove that the curvature at any point of a line is 0 .

Solution: We can parameterize a line segment as

$$
\gamma(t)=\mathbf{a}+t \mathbf{b}
$$

for some \mathbf{a}, and non-zero \mathbf{b} in \mathbb{R}^{n}. We see that

$$
\gamma^{\prime}(t)=\mathbf{b} .
$$

Thus, $\mathbf{T}=\mathbf{b} /\|\mathbf{b}\|$ and $\mathbf{T}^{\prime}=0$. Thus, $\kappa=\left\|\mathbf{T}^{\prime}\right\| /\|\mathbf{b}\|=0$.
(9) Let $\mathbf{x}(t)=(\cos t, \sin t, t)$ for $1 \leq t \leq 2$. Find \mathbf{T}, \mathbf{N}, and \mathbf{B} (that is, the moving frame) for \mathbf{x} and also find κ (the curvature).

Solution: We have:

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =(-\sin t, \cos t, t) \\
\left\|\mathbf{x}^{\prime}(t)\right\| & =\sqrt{2} \\
\mathbf{T}(t) & =\frac{1}{\sqrt{2}}(-\sin t, \cos t, 1) \\
\mathbf{T}^{\prime}(t) & =\frac{1}{\sqrt{2}}(-\cos t,-\sin t, 0) \\
\mathbf{N}(t) & =(-\cos t,-\sin t, 0) \\
\mathbf{B}(t) & =\frac{1}{\sqrt{2}}(\sin t,-\cos t, 1) \\
\kappa(t) & =1 / 2
\end{aligned}
$$

(10) Suppose that $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is a \mathbf{C}^{1} path such that for all $t,\|\mathbf{x}(t)\|=5$. Prove that at each $t, \mathbf{x}(t)$ and $\mathbf{x}^{\prime}(t)$ are perpendicular.
Solution: Since $5=\mathbf{x}(t) \cdot \mathbf{x}(t)$, by the product rule, we have $0=2 \mathbf{x} \cdot \mathbf{x}^{\prime}$, implying that \mathbf{x} and x^{\prime} are perpendicular.
(11) A particle is following the path $\mathbf{x}(t)=\left(t, t^{2}, t^{3}\right)$ for $1 \leq t \leq 5$. Find an integral representing the distance travelled by the particle after t seconds.

Solution: The distance travelled after t seconds is

$$
\begin{aligned}
s(t) & =\int_{1}^{t}\left\|\mathbf{x}^{\prime}(\tau)\right\| d \tau \\
& =\int_{1}^{t} \sqrt{1+4 t^{2}+9 t^{4}} d \tau
\end{aligned}
$$

(12) Let $\mathbf{x}(t)=\left(t^{2}, 3 t^{2}\right)$ for $t \geq 1$. Reparameterize \mathbf{x} by arc length.

Solution: We compute,

$$
s(t)=\int_{1}^{t} \sqrt{4 \tau^{2}+36 \tau^{2}} d \tau=\int_{1}^{t} 2 \tau \sqrt{10} d \tau .=\sqrt{10}\left(t^{2}-1\right)
$$

Then,

$$
s^{-1}(t)=\sqrt{t / \sqrt{10}+1}
$$

Consequently,

$$
\mathbf{y}(t)=\mathbf{x} \circ s^{-1}(t)=(t / \sqrt{10}+1,3 t / \sqrt{10}+3)
$$

is the reparameterization of x by arclength.
(13) Suppose that $\mathbf{x}(t)$ is a path in \mathbb{R}^{n} such that $\mathbf{x}(0)=\mathbf{a}$ and $\mathbf{x}(1)=\mathbf{b}$ (that is, \mathbf{x} is a path joining a to b.) Find a path which has the same image as x but which joins b to a.

Solution: $\mathbf{y}:[-1,0] \rightarrow \mathbb{R}^{n}$ defined by $\mathbf{y}(t)=\mathbf{x}(-t)$ will do the trick since $\mathbf{y}(0)=\mathbf{a}$ and $\mathbf{y}(-1)=\mathbf{b}$.
(14) Let $\mathrm{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a path with $\mathrm{x}^{\prime}(t) \neq \mathbf{0}$ for all t. Let $\mathbf{y}=\mathrm{x} \circ \phi$ be an orientation reversing reparameterization of \mathbf{x}. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is integrable. Prove that $\int_{\mathbf{y}} f d s=\int_{\mathbf{x}} f d s$.
Solution: Since ϕ is orientation reversing, $\left|\phi^{\prime}(t)\right|=-\phi^{\prime}(t)$. Hence, $\left\|\mathbf{y}^{\prime}(t)\right\|=-\left\|\mathbf{x}^{\prime}(\phi(t))\right\| \phi^{\prime}(t)$. Thus,

$$
\int_{\mathbf{y}} f d s=-\int_{c}^{d} f(\mathbf{x}(\phi(t)))\left\|\mathbf{x}^{\prime}(\phi(t))\right\| \phi^{\prime}(t) d t
$$

Substitute $u=\phi(t)$ and $d u=\phi^{\prime}(t) d t$ to get:

$$
\int_{\mathbf{y}} f d s=-\int_{b}^{a} f(\mathbf{x}(u))\left\|\mathbf{x}^{\prime}(u)\right\| d u
$$

Reversing the limits of integration eliminates the negative sign and so the result follows.
(15) Let $\mathbf{x}(t)=(t \cos t, t \sin t)$ for $0 \leq t \leq 2 \pi$. Let $f(x, y)=y \cos x$. Let $F(x, y)=(-y, x)$. Find one-variable integrals representing $\int_{\mathbf{x}} f d s$ and $\int_{\mathbf{x}} F \cdot d \mathbf{s}$.
Solution: Notice that

$$
\begin{aligned}
\mathbf{x}(t) & =(t \cos t, t \sin t) \\
\mathbf{x}^{\prime}(t) & =(\cos t-t \sin t, t \cos t+\sin t) \\
\left\|\mathbf{x}^{\prime}(t)\right\| & =\sqrt{(\cos t-t \sin t)^{2}+(t \cos t+\sin t)^{2}}
\end{aligned}
$$

Thus,

$$
\int_{\mathbf{x}} f d s=\int_{0}^{2 \pi} t \sin t \cos (t \cos t) \sqrt{(\cos t-t \sin t)^{2}+(t \cos t+\sin t)^{2}} d t
$$

And,

$$
\begin{aligned}
\int_{\mathbf{x}} F \cdot d s & =\int_{0}^{2 \pi}\binom{-t \sin t}{t \cos t} \cdot\binom{\cos t-t \sin t}{\sin t+t \cos t} d t \\
& =\int_{0}^{2 \pi} t^{2} d t \\
& =8 \pi^{3} / 3
\end{aligned}
$$

