MA 262: Practice Exam 1 Solutions Name:

This practice exam is much longer than the actual exam.

(1) Let F(x,y) = (2%y, y*z, 3x — 2yz). Find the derivative of F.

Solution:

2oy x?
DF(z,y)=| v* 2yx
3—2y —2x

(2) Let F(z,y) = (x —y,x + y) and let G(x,y) = (x cosy,zsiny). Find the derivative of
F o G using the chain rule.

DF(x,y) = G _11>

_ (cosy —xsiny
DG(z,y) = (siny :vcosy)

Solution:

D(FoG)(z,y) = DF(G(x,y))DG(x,y)

(1 —1 cosy —xsiny
o\l 1 siny xcosy
_ [cosy—siny —xsiny — xcosy
~ \cosy+siny —zxzsiny + xcosy

(3) Suppose that a rotating circle of radius 1 is travelling through the plane, so that at time ¢
seconds the center of the circle is at the point (¢,sint). Let P be the point on the circle
which is at (0,1) at time ¢ = 0. If the circle makes 3 revolutions per second, what is the
path x(t) taken by the point P?

Solution: The rotation of the P relative to the center of the circle (that is, in T¢)) can be
described by the path (cos(67t + 7/2), sin(67t + 7/2)). Thus, x(t) = (cos(67t + 7/2) +
t,sin(6mt + 7/2) +sint).

(4) A rotating circle of radius 1 follows a helical path in R? so that at time ¢ the center of the
circle is at (sint, cost,t). At each time ¢, the circle lies in the osculating plane. (That is,
the circle lies in the plane spanned by the unit tangent and the unit normal vectors.) Let P
be the point on the circle which is at (1, 0) at time ¢t = 0. The circle completes one rotation
every 27 seconds. Find a formula x(t) for the path taken by the point P. (Hint: Express

the center of the circle as a combination of the unit tangent and normal vectors.)
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Solution: Relative to the center of the circle (that is, in 7)) the point P follows the path
costT + sintN where T and N are the unit tangent and unit normal vectors to c(t) =
(sint, cost, t) respectively. Those formulae are

cost
T(t) = \/Li —sint
1
—sint
N(t) = | —cost
0
Thus,
c(t) = costT +sintN + c(t)
cost —sint sint
= &\/Sit —sint | +sint | —cost | + | cost
1 0 t

(5) Use the Mean Value Theorem to explain the relationship between calculating arc length of
aC!curve v: [a,b] — R? by taking the limit of polygonal approximations and the integral

S @l de.
Solution: Subdivide the interval [a, b] using
a=tog<t; < - <t <t,=0b

Assume, for convenience that they are equally spaced so that ¢;,, — t; = At for every 1.
The points (t;) lie on the curve and ||y (¢;1) — (¢;)|| is the length of the line segment
between y(¢;11) and y(t;). As At — 0 (equivalently as n — o) the union of those line
segments approaches the curve. The length of the curve is then

1
A}SOZ [y (tisr) =7 (8l

Write y(¢) = (z(t),y(t)). Since = and y are C' functions, by the mean value theorem there
exist 7,67 € [t;, t;11] so that
d(t)AL = x(tiv1) — x(t)
y'(t)At = y(tir1) — y(b)
Thus,
[y (tin) =y = [[(&"(t), ¥ (7)1 At.

As A — 0, we have t},t* — t,. Assuming that they converge faster than the sum of the

177

errors accumulates, we have:

! — ] A
A}glOZHW i) — ()] = A;mOZHv )|At.

We recognize this latter quantity as a Riemann sum and so the length of v is equal to

b
/ Y ()] dt.
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(6) Explain what it means for curvature to be an intrinsic quantity.

Solution: The curvature of a path x(¢) at ¢y, depends only on the curve itself at ¢y, not on
the parameterization x.

(7) Prove that the curvature at any point of a circle of radius r is 1/r.

Solution: A circle of radius r can be parameterized as x(¢) = (rcost,rsint) for0 < ¢ <

2m. We have:
x'(t) = (—rsint,rcost)
@ = r
T = (—sint,cost)
T = (—cost,—sint)
1T =1
(1) = IT/1]

= 1/r

(8) Prove that the curvature at any point of a line is 0.
Solution: We can parameterize a line segment as
v(t)=a+tb

for some a, and non-zero b in R™. We see that

Y(t)=b.
Thus, T = b/||b|| and T' = 0. Thus, x = ||'T’||/||b]| = 0.

(9) Let x(t) = (cost,sint,t) for 1 <t < 2. Find T, N, and B (that is, the moving frame) for
x and also find « (the curvature).

Solution: We have:

x'(t) = (—sint,cost,t)
IOl = V2

T(t) = \/Li(_ sint,cost, 1)

T(t) = \/ii(—cos t,—sint,0)

N(t) = (—cost,—sint,0)

B(t) = %(smt —cost, 1)

k() 1/2

(10) Suppose that x: [a,b] — R™is a C! path such that for all ¢,
t, x(t) and x/(t) are perpendicular.

x(t)|| = 5. Prove that at each

Solution: Since 5 = x(¢) - x(t), by the product rule, we have 0 = 2x - X/, implying that x
and x’ are perpendicular.

(11) A particle is following the path x(t) = (¢,¢?, %) for 1 < ¢ < 5. Find an integral represent-
ing the distance travelled by the particle after ¢ seconds.
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Solution: The distance travelled after ¢ seconds is

fl [ (r)l[ dr
= [[VI+42+9t8dr.

(12) Letx(t) = (¢, 3t?) for t > 1. Reparameterize x by arc length.

Solution: We compute,

¢ t
= / VAT? + 3672 dT = / 27vV10dr. = V10(t* — 1).
1 1

Then,
“Ht) = 4/t/V10 + 1
Consequently,

y(t) =x0s Ht) = (t/V10 + 1,3t/V10 + 3)
is the reparameterization of x by arclength.

(13) Suppose that x(t) is a path in R" such that x(0) = a and x(1) = b (that is, x is a path
joining a to b.) Find a path which has the same image as x but which joins b to a.

Solution: y: [—1,0] — R™ defined by y(¢) = x(—t) will do the trick since y(0) = a and
y(=1) =b.

(14) Let x: [a,b] — R™ be a path with x'(¢) # 0 for all ¢. Let y = x o ¢ be an orientation
reversing reparameterization of x. Suppose that f: R?* — R is integrable. Prove that

fyfds:fxfds.

Solution: Since ¢ is orientation reversing, |¢'(t)| = —¢'(t). Hence,

Thus,
/fds— /f MK (G016 (8) dt

Substitute u = ¢(t) and du = ¢/ (t)dt to get:

/fds— /f DI ()] du

Reversing the limits of integration eliminates the negative sign and so the result follows.

(15) Let x(t) = (tcost,tsint) for 0 < t < 2m. Let f(z,y) = ycosz. Let F(z,y) = (—y,x).
Find one-variable integrals representing [ fds and [ F - ds.

"D = =[x ((t))ll¢' (1)

Solution: Notice that

x(t) = (tcost,tsint)
x'(t) = (cost —tsint,tcost+ sint)
Ix'(t)]] = +/(cost —tsint)? + (tcost + sint)?

Thus,

27
/fds = / tsint cos(tcost)/(cost — tsint)? + (tcost + sint)2 dt.
X 0
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And,
or [ —tsint cost —tsint

fo.dS o fo (tcost)'(sintjttcost) dt

ST dt

= 8m%/3.



