MA 262: Practice Exam 1 Solutions	Name:

This practice exam is much longer than the actual exam.

(1) Let $F(x, y) = (x^2y, y^2x, 3x - 2yx)$. Find the derivative of F. Solution:

$$DF(x,y) = \begin{pmatrix} 2xy & x^2 \\ y^2 & 2yx \\ 3-2y & -2x \end{pmatrix}$$

(2) Let F(x,y) = (x - y, x + y) and let $G(x,y) = (x \cos y, x \sin y)$. Find the derivative of $F \circ G$ using the chain rule.

Solution:

$$DF(x,y) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
$$DG(x,y) = \begin{pmatrix} \cos y & -x \sin y \\ \sin y & x \cos y \end{pmatrix}$$
$$D(F \circ G)(x,y) = DF(G(x,y))DG(x,y)$$
$$= \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \cos y & -x \sin y \\ \sin y & x \cos y \end{pmatrix}$$
$$= \begin{pmatrix} \cos y - \sin y & -x \sin y - x \cos y \\ \cos y + \sin y & -x \sin y + x \cos y \end{pmatrix}$$

(3) Suppose that a rotating circle of radius 1 is travelling through the plane, so that at time t seconds the center of the circle is at the point $(t, \sin t)$. Let P be the point on the circle which is at (0, 1) at time t = 0. If the circle makes 3 revolutions per second, what is the path $\mathbf{x}(t)$ taken by the point P?

Solution: The rotation of the *P* relative to the center of the circle (that is, in $T_{\mathbf{c}(t)}$) can be described by the path $(\cos(6\pi t + \pi/2), \sin(6\pi t + \pi/2))$. Thus, $\mathbf{x}(t) = (\cos(6\pi t + \pi/2) + t, \sin(6\pi t + \pi/2) + \sin t)$.

(4) A rotating circle of radius 1 follows a helical path in \mathbb{R}^3 so that at time t the center of the circle is at $(\sin t, \cos t, t)$. At each time t, the circle lies in the osculating plane. (That is, the circle lies in the plane spanned by the unit tangent and the unit normal vectors.) Let P be the point on the circle which is at (1, 0) at time t = 0. The circle completes one rotation every 2π seconds. Find a formula $\mathbf{x}(t)$ for the path taken by the point P. (Hint: Express the center of the circle as a combination of the unit tangent and normal vectors.)

Solution: Relative to the center of the circle (that is, in $T_{\mathbf{c}(t)}$) the point P follows the path $\cos t\mathbf{T} + \sin t\mathbf{N}$ where T and N are the unit tangent and unit normal vectors to $\mathbf{c}(t) = (\sin t, \cos t, t)$ respectively. Those formulae are

$$\mathbf{T}(t) = \frac{1}{\sqrt{2}} \begin{pmatrix} \cos t \\ -\sin t \\ 1 \end{pmatrix}$$
$$\mathbf{N}(t) = \begin{pmatrix} -\sin t \\ -\cos t \\ 0 \end{pmatrix}$$

Thus,

$$\mathbf{c}(t) = \cos t \mathbf{T} + \sin t \mathbf{N} + \mathbf{c}(t) \\ = \frac{\cos t}{\sqrt{2}} \begin{pmatrix} \cos t \\ -\sin t \\ 1 \end{pmatrix} + \sin t \begin{pmatrix} -\sin t \\ -\cos t \\ 0 \end{pmatrix} + \begin{pmatrix} \sin t \\ \cos t \\ t \end{pmatrix}.$$

(5) Use the Mean Value Theorem to explain the relationship between calculating arc length of a C¹ curve γ : $[a, b] \to \mathbb{R}^2$ by taking the limit of polygonal approximations and the integral $\int_a^b ||\gamma'(t)|| dt$.

Solution: Subdivide the interval [a, b] using

 $a = t_0 < t_1 < \dots < t_{n-1} < t_n = b.$

Assume, for convenience that they are equally spaced so that $t_{i+1} - t_i = \Delta t$ for every *i*. The points $\gamma(t_i)$ lie on the curve and $||\gamma(t_{i+1}) - \gamma(t_i)||$ is the length of the line segment between $\gamma(t_{i+1})$ and $\gamma(t_i)$. As $\Delta t \to 0$ (equivalently as $n \to \infty$) the union of those line segments approaches the curve. The length of the curve is then

$$\lim_{\Delta t \to 0} \sum_{i=0}^{i=1} ||\gamma(t_{i+1}) - \gamma(t_i)||.$$

Write $\gamma(t) = (x(t), y(t))$. Since x and y are C¹ functions, by the mean value theorem there exist $t_i^*, t_i^{**} \in [t_i, t_{i+1}]$ so that

$$\begin{aligned} x'(t_i^*)\Delta t &= x(t_{i+1}) - x(t_i) \\ y'(t_i^{**})\Delta t &= y(t_{i+1}) - y(t_i) \end{aligned}$$

Thus,

 $||\gamma(t_{i+1}) - \gamma(t_i)|| = ||(x'(t_i^*), y'(t_i^{**}))||\Delta t.$

As $\Delta \to 0$, we have $t_i^*, t_i^{**} \to t_i$. Assuming that they converge faster than the sum of the errors accumulates, we have:

$$\lim_{\Delta t \to 0} \sum_{i=0}^{i=1} ||\gamma(t_{i+1}) - \gamma(t_i)|| = \lim_{\Delta t \to 0} \sum_{i=0}^{i=1} ||\gamma'(t_i)|| \Delta t.$$

We recognize this latter quantity as a Riemann sum and so the length of γ is equal to

$$\int_{a}^{b} \frac{||\gamma'(t)||}{2} dt$$

(6) Explain what it means for curvature to be an intrinsic quantity.

Solution: The curvature of a path $\mathbf{x}(t)$ at t_0 , depends only on the curve itself at t_0 , not on the parameterization \mathbf{x} .

(7) Prove that the curvature at any point of a circle of radius r is 1/r.

Solution: A circle of radius r can be parameterized as $\mathbf{x}(t) = (r \cos t, r \sin t)$ for $0 \le t \le 2\pi$. We have:

$$\mathbf{x}'(t) = (-r \sin t, r \cos t)
 ||\mathbf{x}'(t)|| = r
 \mathbf{T} = (-\sin t, \cos t)
 \mathbf{T}' = (-\cos t, -\sin t)
 ||\mathbf{T}'|| = 1
 \kappa(t) = ||\mathbf{T}'||/||\mathbf{x}'||
 = 1/r.$$

(8) Prove that the curvature at any point of a line is 0.

Solution: We can parameterize a line segment as

$$\gamma(t) = \mathbf{a} + t\mathbf{b}$$

for some a, and non-zero b in \mathbb{R}^n . We see that

 $\gamma'(t) = \mathbf{b}.$

Thus, T = b/||b|| and T' = 0. Thus, $\kappa = ||T'||/||b|| = 0$.

(9) Let $\mathbf{x}(t) = (\cos t, \sin t, t)$ for $1 \le t \le 2$. Find T, N, and B (that is, the moving frame) for x and also find κ (the curvature).

Solution: We have:

$$\begin{aligned} \mathbf{x}'(t) &= (-\sin t, \cos t, t) \\ ||\mathbf{x}'(t)|| &= \sqrt{2} \\ \mathbf{T}(t) &= \frac{1}{\sqrt{2}} (-\sin t, \cos t, 1) \\ \mathbf{T}'(t) &= \frac{1}{\sqrt{2}} (-\cos t, -\sin t, 0) \\ \mathbf{N}(t) &= (-\cos t, -\sin t, 0) \\ \mathbf{B}(t) &= \frac{1}{\sqrt{2}} (\sin t, -\cos t, 1) \\ \kappa(t) &= 1/2 \end{aligned}$$

(10) Suppose that $\mathbf{x}: [a, b] \to \mathbb{R}^n$ is a C¹ path such that for all t, $||\mathbf{x}(t)|| = 5$. Prove that at each t, $\mathbf{x}(t)$ and $\mathbf{x}'(t)$ are perpendicular.

Solution: Since $5 = \mathbf{x}(t) \cdot \mathbf{x}(t)$, by the product rule, we have $0 = 2\mathbf{x} \cdot \mathbf{x}'$, implying that \mathbf{x} and \mathbf{x}' are perpendicular.

(11) A particle is following the path $\mathbf{x}(t) = (t, t^2, t^3)$ for $1 \le t \le 5$. Find an integral representing the distance travelled by the particle after t seconds.

Solution: The distance travelled after t seconds is

$$s(t) = \int_{1}^{t} ||\mathbf{x}'(\tau)|| d\tau = \int_{1}^{t} \sqrt{1 + 4t^2 + 9t^4} d\tau.$$

(12) Let $\mathbf{x}(t) = (t^2, 3t^2)$ for t > 1. Reparameterize \mathbf{x} by arc length.

Solution: We compute,

$$s(t) = \int_{1}^{t} \sqrt{4\tau^{2} + 36\tau^{2}} \, d\tau = \int_{1}^{t} 2\tau \sqrt{10} \, d\tau. = \sqrt{10}(t^{2} - 1).$$

Then,

$$s^{-1}(t) = \sqrt{t/\sqrt{10} + 1}$$

Consequently,

$$\mathbf{y}(t) = \mathbf{x} \circ s^{-1}(t) = (t/\sqrt{10} + 1, 3t/\sqrt{10} + 3)$$

is the reparameterization of \mathbf{x} by arclength.

(13) Suppose that $\mathbf{x}(t)$ is a path in \mathbb{R}^n such that $\mathbf{x}(0) = \mathbf{a}$ and $\mathbf{x}(1) = \mathbf{b}$ (that is, \mathbf{x} is a path joining a to b.) Find a path which has the same image as x but which joins b to a.

Solution: y: $[-1,0] \rightarrow \mathbb{R}^n$ defined by $\mathbf{y}(t) = \mathbf{x}(-t)$ will do the trick since $\mathbf{y}(0) = \mathbf{a}$ and $\mathbf{y}(-1) = \mathbf{b}.$

(14) Let $\mathbf{x}: [a,b] \to \mathbb{R}^n$ be a path with $\mathbf{x}'(t) \neq \mathbf{0}$ for all t. Let $\mathbf{y} = \mathbf{x} \circ \phi$ be an orientation reversing reparameterization of x. Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is integrable. Prove that $\int_{\mathbf{v}} f \, ds = \int_{\mathbf{v}} f \, ds.$

Solution: Since ϕ is orientation reversing, $|\phi'(t)| = -\phi'(t)$. Hence, $||\mathbf{y}'(t)|| = -||\mathbf{x}'(\phi(t))||\phi'(t)$. Thus,

$$\int_{\mathbf{y}} f \, ds = -\int_{c}^{d} f(\mathbf{x}(\phi(t))) ||\mathbf{x}'(\phi(t))||\phi'(t) \, dt.$$

Substitute $u = \phi(t)$ and $du = \phi'(t)dt$ to get:

$$\int_{\mathbf{y}} f \, ds = -\int_{b}^{a} f(\mathbf{x}(u)) ||\mathbf{x}'(u)|| \, du.$$

Reversing the limits of integration eliminates the negative sign and so the result follows.

(15) Let $\mathbf{x}(t) = (t \cos t, t \sin t)$ for $0 \le t \le 2\pi$. Let $f(x, y) = y \cos x$. Let F(x, y) = (-y, x). Find one-variable integrals representing $\int_{\mathbf{x}} f \, ds$ and $\int_{\mathbf{x}} F \cdot ds$.

Solution: Notice that

$$\begin{aligned} \mathbf{x}(t) &= (t\cos t, t\sin t) \\ \mathbf{x}'(t) &= (\cos t - t\sin t, t\cos t + \sin t) \\ ||\mathbf{x}'(t)|| &= \sqrt{(\cos t - t\sin t)^2 + (t\cos t + \sin t)^2} \end{aligned}$$

Thus,

$$\int_{\mathbf{x}} f \, ds = \int_0^{2\pi} t \sin t \cos(t \cos t) \sqrt{(\cos t - t \sin t)^2 + (t \cos t + \sin t)^2} \, dt.$$

And,

$$\int_{\mathbf{x}} F \cdot ds = \int_{0}^{2\pi} \begin{pmatrix} -t\sin t \\ t\cos t \end{pmatrix} \cdot \begin{pmatrix} \cos t - t\sin t \\ \sin t + t\cos t \end{pmatrix} dt.$$
$$= \int_{0}^{2\pi} t^{2} dt$$
$$= 8\pi^{3}/3.$$