MA 262: Practice Exam 1

Name:

This practice exam is much longer than the actual exam.
(1) Let $F(x, y)=\left(x^{2} y, y^{2} x, 3 x-2 y x\right)$. Find the derivative of F.
(2) Let $F(x, y)=(x-y, x+y)$ and let $G(x, y)=(x \cos y, x \sin y)$. Find the derivative of $F \circ G$ using the chain rule.
(3) Suppose that a rotating circle of radius 1 is travelling through the plane, so that at time t seconds the center of the circle is at the point $(t, \sin t)$. Let P be the point on the circle which is at $(0,1)$ at time $t=0$. If the circle makes 3 revolutions per second, what is the path $\mathbf{x}(t)$ taken by the point P ?
(4) A rotating circle of radius 1 follows a helical path in \mathbb{R}^{3} so that at time t the center of the circle is at $(\sin t, \cos t, t)$. At each time t, the circle lies in the osculating plane. (That is, the circle lies in the plane spanned by the unit tangent and the unit normal vectors.) Let P be the point on the circle which is at $(1,0)$ at time $t=0$. The circle completes one rotation every 2π seconds. Find a formula $\mathbf{x}(t)$ for the path taken by the point P. (Hint: Express the center of the circle as a combination of the unit tangent and normal vectors.)
(5) Use the Mean Value Theorem to explain the relationship between calculating arc length of a C^{1} curve $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ by taking the limit of polygonal approximations and the integral $\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t$.
(6) Explain what it means for curvature to be an intrinsic quantity.
(7) Prove that the curvature at any point of a circle of radius r is $1 / r$.
(8) Prove that a straight line has zero curvature.
(9) Let $\mathbf{x}(t)=(\cos t, \sin t, t)$ for $1 \leq t \leq 2$. Find \mathbf{T}, \mathbf{N}, and \mathbf{B} (that is, the moving frame) for \mathbf{x} and also find κ (the curvature).
(10) Suppose that $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is a C^{1} path such that for all $t,\|\mathbf{x}(t)\|=5$. Prove that at each $t, \mathbf{x}(t)$ and $\mathbf{x}^{\prime}(t)$ are perpendicular.
(11) A particle is following the path $\mathbf{x}(t)=\left(t, t^{2}, t^{3}\right)$ for $1 \leq t \leq 5$. Find an integral representing the distance travelled by the particle after t seconds.
(12) Let $\mathbf{x}(t)=\left(t^{2}, 3 t^{2}\right)$ for $t \geq 1$. Reparameterize \mathbf{x} by arc length.
(13) Suppose that $\mathbf{x}(t)$ is a path in \mathbb{R}^{n} such that $\mathbf{x}(0)=\mathbf{a}$ and $\mathbf{x}(1)=\mathbf{b}$ (that is, \mathbf{x} is a path joining \mathbf{a} to \mathbf{b}.) Find a path which has the same image as \mathbf{x} but which joins \mathbf{b} to a.
(14) Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a path with $\mathbf{x}^{\prime}(t) \neq \mathbf{0}$ for all t. Let $\mathbf{y}=\mathbf{x} \circ \phi$ be an orientation reversing reparameterization of \mathbf{x}. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is integrable. Prove that $\int_{\mathbf{y}} f d s=\int_{\mathbf{x}} f d s$.
(15) Let $\mathbf{x}(t)=(t \cos t, t \sin t)$ for $0 \leq t \leq 2 \pi$. Let $f(x, y)=y \cos x$. Find a one-variable integral representing $\int_{\mathbf{x}} f d s$.

