MA 262: Practice Exam 1	Name:

This practice exam is much longer than the actual exam.

- (1) Let $F(x,y) = (x^2y, y^2x, 3x 2yx)$. Find the derivative of F.
- (2) Let F(x, y) = (x y, x + y) and let $G(x, y) = (x \cos y, x \sin y)$. Find the derivative of $F \circ G$ using the chain rule.
- (3) Suppose that a rotating circle of radius 1 is travelling through the plane, so that at time t seconds the center of the circle is at the point $(t, \sin t)$. Let P be the point on the circle which is at (0, 1) at time t = 0. If the circle makes 3 revolutions per second, what is the path $\mathbf{x}(t)$ taken by the point P?
- (4) A rotating circle of radius 1 follows a helical path in \mathbb{R}^3 so that at time t the center of the circle is at $(\sin t, \cos t, t)$. At each time t, the circle lies in the osculating plane. (That is, the circle lies in the plane spanned by the unit tangent and the unit normal vectors.) Let P be the point on the circle which is at (1,0) at time t = 0. The circle completes one rotation every 2π seconds. Find a formula $\mathbf{x}(t)$ for the path taken by the point P. (Hint: Express the center of the circle as a combination of the unit tangent and normal vectors.)
- (5) Use the Mean Value Theorem to explain the relationship between calculating arc length of a C¹ curve $\gamma: [a, b] \to \mathbb{R}^2$ by taking the limit of polygonal approximations and the integral $\int_a^b ||\gamma'(t)|| dt$.
- (6) Explain what it means for curvature to be an intrinsic quantity.
- (7) Prove that the curvature at any point of a circle of radius r is 1/r.
- (8) Prove that a straight line has zero curvature.
- (9) Let $\mathbf{x}(t) = (\cos t, \sin t, t)$ for $1 \le t \le 2$. Find \mathbf{T} , \mathbf{N} , and \mathbf{B} (that is, the moving frame) for \mathbf{x} and also find κ (the curvature).
- (10) Suppose that $\mathbf{x}: [a, b] \to \mathbb{R}^n$ is a C¹ path such that for all t, $||\mathbf{x}(t)|| = 5$. Prove that at each t, $\mathbf{x}(t)$ and $\mathbf{x}'(t)$ are perpendicular.
- (11) A particle is following the path $\mathbf{x}(t) = (t, t^2, t^3)$ for $1 \le t \le 5$. Find an integral representing the distance travelled by the particle after t seconds.
- (12) Let $\mathbf{x}(t) = (t^2, 3t^2)$ for $t \ge 1$. Reparameterize \mathbf{x} by arc length.
- (13) Suppose that $\mathbf{x}(t)$ is a path in \mathbb{R}^n such that $\mathbf{x}(0) = \mathbf{a}$ and $\mathbf{x}(1) = \mathbf{b}$ (that is, \mathbf{x} is a path joining \mathbf{a} to \mathbf{b} .) Find a path which has the same image as \mathbf{x} but which joins \mathbf{b} to \mathbf{a} .

- (14) Let $\mathbf{x}: [a, b] \to \mathbb{R}^n$ be a path with $\mathbf{x}'(t) \neq \mathbf{0}$ for all t. Let $\mathbf{y} = \mathbf{x} \circ \phi$ be an orientation reversing reparameterization of \mathbf{x} . Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ is integrable. Prove that $\int_{\mathbf{y}} f \, ds = \int_{\mathbf{x}} f \, ds$.
- (15) Let $\mathbf{x}(t) = (t \cos t, t \sin t)$ for $0 \le t \le 2\pi$. Let $f(x, y) = y \cos x$. Find a one-variable integral representing $\int_{\mathbf{x}} f \, ds$.