
MA 262 Homework 5: Finding your path.

We have now entired the core content of the course: Vector Fields! Our goal for the next week is
to develop an understanding of vector fields by studying paths moving through them.

Read Sections 3.4, 6.2 and 6.3. As you read focus on:

• The meaning of gradient, curl, and divergence.
• The integral and differential formulas for gradient, curl, and divergence.
• The relationship between gradient, curl and divergence.
• The special properties of conservative vector fields.
• The statement and meaning of Green’s theorem.

Problem 5.A You might want to review the sample Mathematica file on the webpage for help with
this one. Let f (x,y) = x2 + y. Create a single Mathematica plot showing f (using DensityPlot),
∇ f , and a flow line for ∇ f . (Hint: first be sure you can plot each individually, then assign each of
them a name and use the Show command. Get help from me early if you get stuck.) Turn in your
Mathematica code along with what it produces. You can print it in black and white.

Problem 5.B Do these problems, each of which is just practice performing calculations. Recall
that you may check your answers in the back of the book, but you should not make use of the
solutions manual. Give credit on the cover sheet to any other sources you rely on. Feel free to use
Mathematica to actually compute integrals.

Section 3.4 (pg 235 ff.): 1, 3, 5, 7, 8, 9, 10

Section 6.3 (pg 448 ff): 1, 2, 3, 4, 7

Section 6.2 (pg 436 ff): 1, 3, 5, 7.

Problem 5.C Recall that in class we defined the scalar curl of a vector field F on R2 by the integral
formula:

scurlF(a) = lim
n→∞

1
area(Cn)

∫
Cn

F ·ds

where (Cn) is a sequence of closed curves (preferably rectangles) converging to a and area(Cn)
is the area enclosed by each of them. Use this definition in conjunction with the Fundamental
Theorem of Calculus for Conservative Vector Fields to prove that if F is a conservative vector field
then its scalar curl at each point is zero.
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Problem 5.D This is an important problem that we’ll refer to repeatedly. The point is that whether
or not a vector field is conservative depends not only on the formula defining F but also on the
domain on which it is defined.

Let F(x,y) = 1
x2+y2

(
−y
x

)
. This vector field is defined on the domain U = R2 \{(0,0)} (the plane

minus the origin).

(1) Find a closed flow line and explain why this shows that F is not conservative on U .

(2) Let C be a circle of radius r > 0 centered at the origin, oriented counter-clockwise. Com-
pute

∫
C F ·ds. Explain why this computation also shows that F is not conservative on U .

(3) Find the scalar curl of F using the partial derivative formula. (The computation is a little
messy, but the answer is pretty.)

(4) Let P ∈ R. Find a vector field G on U such that scurlG = 0 and
∫

C G · ds = P. (Your
answer will involve the number P and should be related to the vector field F). Show that if
f : U → R is C1, then G+∇ f also has this property.

(5) (You might want to save this one and the next for later in the week.) Suppose that C is
any smooth simple closed curve not enclosing the origin. Use Green’s theorem to show
that

∫
C

F · ds = 0. Conclude that on any domain W not including the origin, F has path-

independent line integrals and is, therefore, conservative.

Problem 5.E This problem looks much scarier than it actually is. We begin with some exposition:

A subset U of R2 is a domain if it has the property that whenever a point x ∈U then all points
sufficiently close to x are also elements of R2. For example, the set of points (x,y) ∈ R2 such
that (x,y) 6= (0,0) is a domain because if you take a point other than the origin and perturb it by a
very small amount, it will still not be the origin. You’ll be safe if you just think of a domain as a
2-dimensional subset of the plane. A line segment in R2, for instance, is not a domain.

A vector space (informally) is a set where we can add the elements of the set and also scale each
element by a real number (called a “scalar”.) For example, if X is any nonempty set, the set of
functions F (X) = { f : X → R} is a vector space. For example, if f and g are both real-valued
functions on X , we define the function f +g by the formula:

( f +g)(x) = f (x)+g(x)

for every x ∈ X . Similarly, if k ∈ R, we define the function k f by the formula:

(k f )(x) = k · f (x)

for every x ∈ X . (Yes, this is really as simple as it looks. The point is that k f is the name of the
new function while k f (x) is what the function produces, when x is plugged in.)

(1) Let U be a domain in R2. Explain why the set of all infinitely differentiable scalar fields
on U is a vector space. (This means you have to explain how to add two scalar fields to get
another scalar field and how to scale a scalar field by a real number k.)

(2) Let U be a domain in R2. Explain why the set of all infinitely differentiable vector fields
on U is a vector space.
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Here is some more exposition: If V and W are vector spaces, a function T : V →W is a
linear transformation if for every a,b ∈V we have T (a+b) = T (a)+T (b) and for every
k ∈ R we have T (ka) = kT (a). For example, the function

T (x,y) = (2x+3y,−x+7y)

is a linear transformation from the vector space R2 to itself.

(3) (Warm-up 1) Let V be the vector space of all infinitely differentiable functions f : R→R.
Explain why the derivative d

dt : V → V is a linear transformation. (You may just appeal
to facts from Calculus 1 about how derivatives interact with addition of functions and
multiplying by constants.)

(4) (Warm-up 2) Let V be the vector space of all continuous functions f : R→ R. For f ∈V ,
define

I( f ) =
∫ t

0
f (τ)dτ.

The fundamental theorem of Calculus guarantees that I( f ) is a continuous (indeed, dif-
ferentiable!) function. Use facts from Calculus 1 to explain why I : V → V is a linear
transformation.

(5) Let T : V →W be a linear transformation between vector spaces V and W . Define the
kernel of T to be the set:

kerT = {v ∈V : T (v) = 0}.

Define the image (or range) of T to be the set:

imT = {w ∈W : there exists some v ∈V with T (v) = w}.

Show that kerT and imT are both vector spaces.

(Hint: To show that kerT is a vector space, suppose that a ∈ kerT and b ∈ kerT . Explain
why T (a+b) = 0, for then we see that a+b ∈ kerT . Then suppose that k ∈R and explain
why ka ∈ kerT . Finally, do a similar sort of thing for imT .)

(6) Let U be a domain in R2 and let C0(U) be the vector space of all infinitely differentiable
scalar fields on U . Let C1(U) denote the vector space of all infinitely differentiable vector
fields on U . Explain why the gradient

∇ : C0(U)→C1(U)

is a linear transformation.

(7) Continue using the notation from the previous part. Recall that if F ∈ C1(U), then we
defined the scalar curl of F using the formula in 5.C above. Use that formula, along with
properties of integrals and limits, to show that

scurl : C1(U)→C0(U)

is a linear transformation.
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(8) We can also define scalar curl of a vector field F(x,y) =
(

M(x,y)
N(x,y)

)
by the differential

formula:

scurlF(x) =
∂N
∂x

(x)− ∂M
∂y

(x)

Use this version of the scalar curl to again prove that scalar curl is a linear transformation.

(9) Explain how divergence can be thought of as a linear transformation from C1(U)→C0(U).

(10) In class we discussed how for any scalar field f ,

scurl(∇ f ) = 0

Explain why this shows that every vector field that is in the image of the gradient is also in
the kernel of scalar curl. (We write this as: im∇⊂ kerscurl.) Use 5.D. to give an example
where the containment is proper; that is, there exists a vector field whose scalar curl is zero
but which is not in the image of gradient.

Problem 5.F This problem expands on 5.D. Figure out how to adapt that problem to this context.

(1) Let a ∈ R2. Let Ua consist of all of the plane except a. Find a non-zero C1 vector field
Fa on Ua so that the scalar curl of Fa is zero but Fa is not conservative. Be sure to give a
thorough explanation of how you know both facts.

(2) Do part (1) again, but his time suppose you are given a number P 6= 0 that, in addition to F
having scalar curl 0 and being non-conservative, also ensure that if Ca is a circle enclosing
a, then ∫

Ca

F ·ds = P.

(Your answer will involve the number P.)

(3) Use 5.D to show that if C is any simple closed curve not enclosing a, then
∫
C

F ·ds = 0.

(4) Given distinct points a and b in R2, define Ua and Ub as above. Denote all the points of
R2 that are neither a nor b by Ua∩Ub. Let Ca be a small circle around the point a and Cb
a small circle around b. (Each should have radius smaller than ||b−a||.) Find an example
of a vector field G on Ua∩Ub such that scurlG = 0,

∫
Ca

G ·ds = 21 and
∫

Cb

G ·ds = 9.

Problem 5.G Let

F(x,y) =
(

a b
c d

)(
x
y

)
=

(
ax+by
cx+dy

)
for fixed values of a,b,c,d.

(1) Find the divergence of F using the partial derivative formula.

(2) Find the curl of F using the partial derivative formula.

(Those of you who have taken linear algebra may recognized that the divergence of a linear vector field is
the trace.)
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