Actions and Permutations

1. FUNCTIONS AND POWER SETS

Suppose that $f: X \to Y$ is a function. This function induces a function $\hat{f}: \mathscr{P}(X) \to \mathscr{P}(Y)$ on power sets, as follows. For each subset $A \subset X$, we define

$$\widehat{f}(A) = \operatorname{range} f \Big|_{A}$$

That is,

$$\widehat{f}(A) = \left\{ b \in A : \exists a \in A \text{ s.t. } f(a) = b \right\} = \left\{ f(a) : a \in A \right\}$$

Lemma 1.1. If *f* is a bijection, so is \hat{f} .

Proof. This is easiest done by observing:

$$\widehat{f^{-1}} = (\widehat{f})^{-1}.$$

Lemma 1.2. Suppose that $f: X \to Y$ and $g: Y \to Z$ are functions, then

$$\widehat{g \circ f} = \widehat{g} \circ \widehat{f}.$$

Proof. We show that the functions on both the right and left take identical values on an arbitrary $A \in \mathcal{P}(X)$.

Let $x \in \widehat{g \circ f}(A)$. By definition, there is $a \in A$ such that $g \circ f(a) = x$. Let b = f(a). Thus, $b \in \widehat{f}(A)$. Now g(b) = x. Thus, $x \in \widehat{g}(\widehat{f}(A))$. Consequently,

$$\widehat{g \circ f}(A) \subset \widehat{g} \circ \widehat{f}(A).$$
$$\widehat{g} \circ \widehat{f}(A) \subset \widehat{g \circ f}(A),$$

The claim that

is proved similarly.

Notice that for every $A \in \mathscr{P}(X)$, the cardinality of $\widehat{f}(A)$ is the same as for A. Often times, it is advantageous to restrict \widehat{f} to sets of a certain cardinality.

Perhaps confusingly, except in the next section, we *always* write f(A) instead of $\hat{f}(A)$. That is, we use the same notation for f and for \hat{f} .

2. PERMUTATIONS OF SUBSETS

Suppose that *X* is a set, possibly with some sort of structure (eg. a metric space or a group). Let $f: X \to X$ be a symmetry. Then we have the induced function $\widehat{f}: \mathscr{P}(X) \to \mathscr{P}(X)$ defined previously. By the definition of symmetry, *f* is a bijection and so \widehat{f} is too. Thus, $\widehat{f} \in \text{PERM}(\mathscr{P}(X))$.

In fact, this produces an injective group homomorphism

 $\widehat{\cdot}$: Sym(X) \rightarrow PERM $\mathscr{P}(X)$.

It is defined by $f \mapsto \hat{f}$.

Proof. Let $f, g \in \text{Sym}(X)$. Then $\hat{f}, \hat{g} \in \text{Perm}(\mathscr{P}(X))$. In the lemma of the last section we showed

$$\widehat{f \circ g} = \widehat{f} \circ \widehat{g}.$$

Since function composition is the group operation for both Sym(X) and $PERM(\mathscr{P}(X))$, we have a group homomorphism.

To prove it's injective, simply notice that if $\hat{f}(A) = A$ for every $A \subset X$, then $\hat{f}(\{a\}) = \{a\}$ for every $a \in A$. Hence, f(a) = a for every $a \in A$. Thus, f is the identity on X.

Corollary 2.1. Let *P* be a property possibly possessed by some subsets of *X* and which is invariant under elements of Sym(X) (i.e. *P* is part of the structure of *X*). Suppose that $f \in Sym(X)$, and that for some $k \ge 1$, \mathscr{C}_k is the set of all subsets of *X* having cardinality *k* and some property *P*. Then there is a homomorphism $Sym(X) \rightarrow PERM(\mathscr{C}_k)$.

Proof. If *A* has *k* elements and if *f* is a bijection, then $\widehat{f}(A)$ also has *k* elements.

Restricting to subsets of a fixed cardinality, the homomorphism of the previous corollary may not be injective. Anything in its kernel, fixes every k element subset having property P. But it may still move the points in those subsets around within the subsets.

Example 2.2. Let Γ be a graph and suppose $f \in \text{Sym}(\Gamma)$. Recall that f takes vertices to vertices and edges to edges. Thus, if A is a subset of the vertices of X such that no two distinct vertices of A are the endpoints of an edge in Γ , then $\hat{f}(A)$ is a subset of the vertices of Γ such that no two vertices in $\hat{f}(A)$ are the endpoints of an edge in Γ . Furthermore, $\hat{f}(A)$ and A have the same cardinality. Suppose \mathscr{C}_4 is the set whose elements are the 4 element subsets A of the vertices of Γ such that no two vertices in A share an edge. We then have a homomorphism $\text{Sym}(\Gamma) \to \text{PERM}(\mathscr{C}_4)$.