[ Spring 2018/MA 434 Group Project 2: Symmetries of Objects l

1. INTRODUCTION

In the previous group project, we saw how a group acts on itself via multiplication on the left. (This
is sometimes called a left translation.) In the first part of this project, you will explore the action of a
group on a geometric object and in the second part you'll explore a different kind of actions of G on
itself.

2. GEOMETRY

Recall (or learn!) that a metric space is a set X together with a way of measuring “distance”. That is, a
function d: X x X — [0, 00). The distance function (or metric) d is required to satisfy:

M1) d(x,y)=0ifand onlyif x = y.
M2) d(x,y)=d(y,x)forall x,y € X.
M3) d(x,z)<d(x,y)+d(y,z)forall x,y,z € X.

We will use the following theorem without proof (though really every math major should learn how to
prove it at some point.)

Theorem. The set R" with (euclidean) metric d defined by
d(a,b)=+(a—Db)-(a—Db)
is a metric space.

Here, the symbol - means the dot product. If we write a and b out in coordinates as a = (ay, ay, ..., a,)
and b =(by, by, ..., by,), then we can also write d as:

d((ay,...,an),(b1,..., by)) = V(a1 — b2 +(ay— bp)2 + -+ +(a, — by)2.

Given any metric space a bijection ¢p: X — X such thatforall a, b € X,
d(¢(a), ¢(b))=d(a,Db)
is called an isometry of X. The set of isometries is denoted ISOM(X).
Here is another theorem whose proof we’ll omit. (I usually cover it in Geometry of Surfaces.)
Theorem. Everyisometry T of R" (with the euclidean metric) is of the form:
T(x)=Ax+b

where b e R" and A is an orthogonal n x n matrix. If det A > 0 the isometry is orientation-preserving;
otherwise it is orientation-reversing.

In the case of 2 and 3-dimensions, the theorem takes the slighly nicer form.

Theorem. Suppose that T € ISOM(R?). Then T is the composition of translations, rotations, and re-
flections. If T is orientation-preserving, then it is the composition of a single translation and a single

rotation.
1



Theorem. Suppose that T € ISOM(R3). Then T is the composition of translations, rotations and re-
flections. If T is orientation-preserving, then it is the composition of a single translation and a single
rotation.

Proof. Suppose that T € IsoM(R3) is orientation-preserving and that T(0) = 0. By the theorem above,
there exists an orthogonal matrix A such that T(x)= Ax for every x € R3. The definition of orthogonal
matrix says that AA” = 1. The multiplicative property of the determinant says that det(A) = £1. Since
it is orientation-preserving, det(A) = 1. Let A1, A5, A3 be the eigenvalues for A. Their product is equal
to 1. Since complex eigenvalues come in conjugate pairs, there is (at least) one A € R. Let v be the
associated eigen-vector. We have

Av=Av

It follows from the fact that A is orthogonal (or that T is an isometry) that A = £1. If A = —1, then all
three eigenvalues are real and there is a different one which is +1. Hence, we may assume that A = 1.
Writing A in the basis corresponding to unit length eigenvectors, we see that A is a rotation around the
line with axis passing through 0 and v.

If T(0) # 0, then apply the previous paragraph to 7 — T(0). If T is not orientation-preserving, apply it
to the composition of T with a reflection. O

If X cR" an isometry of X is the restriction of an isometry of R” to X.

Answer the following questions:

(1) You were given an archimedean solid. Analyze, as best you can, the isometries of your ob-
ject. For various points, work out their orbits and stabilizers. What are the orders of the dif-
ferent symmetries? Can you figure out how many symmetries your object has? How many
orientation-preserving symmetries does it have? For a polyhedron X c R”, a group acting by
isometries on X is said to be vertex-transitive if all of the vertices are in a single orbit. Is the
isometry group of your object vertex-transitive?

Write a paragraph summarizing your findings.

(2) Let R be a rotation of R? by an angle 6 around the origin. Let S be a rotation by an angle 0
around a point p € R? other than the origin. Prove that R and S are conjugate in ISOM(R?).
That is, show that there exists T € ISOM(R?) such that

S=TRT™.

(3) Let R be a reflection across a line L ¢ R2. Let S be a reflection across a line M c R2. Prove that
R and S are conjugate in ISOM(R?).

(4) Prove that, inIsoM(R?), orientation-preserving isometries and orientation-reversing isometries
are never conjugate.

(5) Letting X be your archimedean solid, find two conjugate isometries of X.

Moral: If f and g are conjugate elements of a group G acting on a set S, we can think of f and
g as “doing the same thing,” but in different locations.
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3. THE INNER AUTOMORPHISM GROUP

Let G be a group and let S = G. Define a left action G © S by

(g,s)—gsg™"

It is called the action by left conjugation.

Answer the following questions:

(1)
2)

3)

4)

5)
(6)

()

Show that the action by left conjugation of a group on itself is an action.

Given g € G, let ¢o: G — G be defined by ¢g(s) = gsg~!. Show that ¢4 is an automorphism
(i.e. isomorphism) of G. It is called an inner automorphism of G.

Show that the set AUT(G) of all automorphisms of G is a group and that the set INN(G) of inner
automorphisms of G is a normal subgroup. Recall that whenever we quotient by a normal sub-
group, the resulting set of cosets inherits a group structure. In this case, the resulting group is
called the outer automorphism group of G.

Switching our gaze back to the action by left conjugation, define the conjugacy class of s € G to
simply be its orbit under the action. That is, the conjugacy class C(s) of s is the set of elements
to which it is conjugate. Let 6 C G be set containing exactly one element from each conjugacy
class in G. From our previous work, we know that orbits partition the set so (recalling that, in
this case, G is the set). We have (when |G| is finite) the class formula

Gl=>IC(s)]
SEC
Recalling that C(1) = {1}, we can rewrite this as:

Gl=1+ > [C(s).

CSEC,s#1

Since each conjugacy class C(s) is an orbit under an action of G on itself, by the orbit stabilizer
theorem |C(s)| must divide |G|. As observed in Artin’s Algebra, this puts very strong restrictions
on either the size of the group or the size of the conjugacy classesin G.

Prove that g € G is in the center of G if and only if |C(G)| = 1. (The center of a group is the set of
all elements of G which commute with all other elements of G.) Conclude that if |G| is a power
of a prime, then the center of G is non-trivial.

Prove that if |G| = p? for some prime p, then G is abelian.

Let D, be the dihedral group of order 2n. (Recall that D,, is the set of isometries of a regular n-
gon in R?.) Determine all the conjugacy classes in D,, and verify that the class equation holds.

Prove that if G is a group and if H <G, then H is the union of (some of the) conjugacy classes in
G. Conclude that (when H <« G)

H|=1+ > |C(s)

S€6NH,s#1
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