
Spring 2018/MA 434 Group Project 2: Symmetries of Objects

1. INTRODUCTION

In the previous group project, we saw how a group acts on itself via multiplication on the left. (This
is sometimes called a left translation.) In the first part of this project, you will explore the action of a
group on a geometric object and in the second part you’ll explore a different kind of actions of G on
itself.

2. GEOMETRY

Recall (or learn!) that a metric space is a set X together with a way of measuring “distance”. That is, a
function d : X ×X → [0,∞). The distance function (or metric) d is required to satisfy:

(M1) d (x , y ) = 0 if and only if x = y .

(M2) d (x , y ) = d (y , x ) for all x , y ∈ X .

(M3) d (x , z )≤ d (x , y ) +d (y , z ) for all x , y , z ∈ X .

We will use the following theorem without proof (though really every math major should learn how to
prove it at some point.)

Theorem. The set Rn with (euclidean) metric d defined by

d (a , b ) =
p

(a − b ) · (a − b )

is a metric space.

Here, the symbol ·means the dot product. If we write a and b out in coordinates as a = (a1, a2, . . . , an )
and b = (b1, b2, . . . , bn ), then we can also write d as:

d
�

(a1, . . . , an ), (b1, . . . , bn )
�

=
Æ

(a1− b1)2+ (a2− b2)2+ · · ·+ (an − bn )2.

Given any metric space a bijectionφ : X → X such that for all a , b ∈ X ,

d (φ(a ),φ(b )) = d (a , b )

is called an isometry of X . The set of isometries is denoted ISOM(X ).

Here is another theorem whose proof we’ll omit. (I usually cover it in Geometry of Surfaces.)

Theorem. Every isometry T of Rn (with the euclidean metric) is of the form:

T (x ) = Ax + b

where b ∈Rn and A is an orthogonal n ×n matrix. If det A > 0 the isometry is orientation-preserving;
otherwise it is orientation-reversing.

In the case of 2 and 3-dimensions, the theorem takes the slighly nicer form.

Theorem. Suppose that T ∈ ISOM(R2). Then T is the composition of translations, rotations, and re-
flections. If T is orientation-preserving, then it is the composition of a single translation and a single
rotation.
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Theorem. Suppose that T ∈ ISOM(R3). Then T is the composition of translations, rotations and re-
flections. If T is orientation-preserving, then it is the composition of a single translation and a single
rotation.

Proof. Suppose that T ∈ ISOM(R3) is orientation-preserving and that T (0) = 0. By the theorem above,
there exists an orthogonal matrix A such that T (x ) = Ax for every x ∈R3. The definition of orthogonal
matrix says that AAT = 1. The multiplicative property of the determinant says that det(A) = ±1. Since
it is orientation-preserving, det(A) = 1. Let λ1,λ2,λ3 be the eigenvalues for A. Their product is equal
to 1. Since complex eigenvalues come in conjugate pairs, there is (at least) one λ ∈ R. Let v be the
associated eigen-vector. We have

Av =λv

It follows from the fact that A is orthogonal (or that T is an isometry) that λ = ±1. If λ = −1, then all
three eigenvalues are real and there is a different one which is +1. Hence, we may assume that λ = 1.
Writing A in the basis corresponding to unit length eigenvectors, we see that A is a rotation around the
line with axis passing through 0 and v .

If T (0) 6= 0, then apply the previous paragraph to T −T (0). If T is not orientation-preserving, apply it
to the composition of T with a reflection. �

If X ⊂Rn an isometry of X is the restriction of an isometry of Rn to X .

Answer the following questions:

(1) You were given an archimedean solid. Analyze, as best you can, the isometries of your ob-
ject. For various points, work out their orbits and stabilizers. What are the orders of the dif-
ferent symmetries? Can you figure out how many symmetries your object has? How many
orientation-preserving symmetries does it have? For a polyhedron X ⊂ Rn , a group acting by
isometries on X is said to be vertex-transitive if all of the vertices are in a single orbit. Is the
isometry group of your object vertex-transitive?

Write a paragraph summarizing your findings.

(2) Let R be a rotation of R2 by an angle θ around the origin. Let S be a rotation by an angle θ
around a point p ∈ R2 other than the origin. Prove that R and S are conjugate in ISOM(R2).
That is, show that there exists T ∈ ISOM(R2) such that

S = T RT −1.

(3) Let R be a reflection across a line L ⊂R2. Let S be a reflection across a line M ⊂R2. Prove that
R and S are conjugate in ISOM(R2).

(4) Prove that, in ISOM(R2), orientation-preserving isometries and orientation-reversing isometries
are never conjugate.

(5) Letting X be your archimedean solid, find two conjugate isometries of X .

Moral: If f and g are conjugate elements of a group G acting on a set S , we can think of f and
g as “doing the same thing,” but in different locations.
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3. THE INNER AUTOMORPHISM GROUP

Let G be a group and let S =G . Define a left action G x S by

(g , s ) 7→ g s g −1

It is called the action by left conjugation.

Answer the following questions:

(1) Show that the action by left conjugation of a group on itself is an action.

(2) Given g ∈ G , let φg : G → G be defined by φg (s ) = g s g −1. Show that φg is an automorphism
(i.e. isomorphism) of G . It is called an inner automorphism of G .

(3) Show that the set AUT(G ) of all automorphisms of G is a group and that the set INN(G ) of inner
automorphisms of G is a normal subgroup. Recall that whenever we quotient by a normal sub-
group, the resulting set of cosets inherits a group structure. In this case, the resulting group is
called the outer automorphism group of G .

(4) Switching our gaze back to the action by left conjugation, define the conjugacy class of s ∈G to
simply be its orbit under the action. That is, the conjugacy class C (s ) of s is the set of elements
to which it is conjugate. LetC ⊂G be set containing exactly one element from each conjugacy
class in G . From our previous work, we know that orbits partition the set so (recalling that, in
this case, G is the set). We have (when |G | is finite) the class formula

|G |=
∑

s∈C
|C (s )|

Recalling that C (1) = {1}, we can rewrite this as:

|G |= 1+
∑

c s∈C ,s 6=1
|C (s )|.

Since each conjugacy class C (s ) is an orbit under an action of G on itself, by the orbit stabilizer
theorem |C (s )|must divide |G |. As observed in Artin’s Algebra, this puts very strong restrictions
on either the size of the group or the size of the conjugacy classes in G .

Prove that g ∈G is in the center of G if and only if |C (G )|= 1. (The center of a group is the set of
all elements of G which commute with all other elements of G .) Conclude that if |G | is a power
of a prime, then the center of G is non-trivial.

(5) Prove that if |G |= p 2 for some prime p , then G is abelian.

(6) Let Dn be the dihedral group of order 2n . (Recall that Dn is the set of isometries of a regular n-
gon in R2.) Determine all the conjugacy classes in Dn and verify that the class equation holds.

(7) Prove that if G is a group and if H /G , then H is the union of (some of the) conjugacy classes in
G . Conclude that (when H /G )

|H |= 1+
∑

s∈C∩H ,s 6=1

|C (s )|
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