Spring 2018/MA 434 Group Project 1: Orbit-Stabilizer Theorem

1. RECOLLECTIONS

Recall that a **group** is a set *G* together with an operation \circ such that:

- (G1) For all $a, b \in G$, there is a unique element $a \circ b \in G$
- (G2) There exists an element 1 such that for every $a \in G$,

$$a \circ 1 = 1 \circ a = a$$

(G3) For every $a \in G$, there exists $a^{-1} \in G$ such that

$$a \circ a^{-1} = a^{-1} \circ a = \mathbb{1}$$

(G4) For every $a, b, c \in G$

$$a \circ (b \circ c) = (a \circ b) \circ c$$

We often write ab instead of $a \circ b$. Recall that 1 is the unique element in G satisfying the equations in (G2) and that, given $a \in G$, the element a^{-1} is the unique element in G satisfying the equation in (G3). If a group G also satisfies, for every $a, b \in G$,

ab = ba

we say that *G* is **abelian**.

If $H \subset G$ is also a group (with the same operation \circ) then H is a **subgroup** of G. If $H \subset G$ is a subgroup, we write H < G. It is a **normal** subgroup if for every $h \in H$ and $g \in G$, $ghg^{-1} \in H$. In general, we say that the element ghg^{-1} is the **conjugate** of h by g. If H < G is a normal subgroup, we write H < G.

Given a group *G* and H < G, recall that for $g \in G$, a **left coset** of *H* is the set:

$$gH = \{g' \in G : \exists h \in H \text{ s.t. } g' = gh\}$$

The set $G/H = \{gH : g \in G\}$ is called the **quotient set** of *G* by *H*. The cardinal number [G : H] = |G/H| is called the **index** of *H* in *G*. It can be infinite.

Given groups *G* and *G'*, a **homomorphism** is a function $\phi : G \to G'$ such that for all $a, b \in G$

$$\phi(ab) = \phi(a)\phi(b).$$

It is an **isomorphism** if it is also a bijection.

Write answers to the following questions:

- (1) List as many different groups or types of groups as you can. Be sure to include finite and infinite groups and abelian and non-abelian groups.
- (2) Prove that G/H is a partition of G. (Equivalently, defining $g \sim g'$ if and only if there exists $h \in H$ with g' = gh makes \sim an equivalence relation on G.)
- (3) Lagrange's theorem says that if *G* is a finite group and if H < G, then

$$|G| = |H|[G:H]$$

Prove it, using the fact that G/H is a partition of G and by showing that each coset gH is in bijection with H.

2. GROUP ACTIONS

A **permutation** of a set *X* is a bijection $X \to X$. The set of permutations of *X* is denoted PERM(*X*), it is a group with function composition as the operation.

Definition. A **left action** of a group *G* on a set *S* is a function $G \times S \rightarrow S$ such that, for every $g \in G$ and $s \in s$,

$$(g, s) \mapsto g s \in S$$

and

(A1)
$$1s = s$$
 for every $s \in S$

(A2) g(g's) = (gg')s for every $g, g' \in G$ and $s \in S$.

If *G* acts on *S* on the left, we write $G \cap S$, although this notation doesn't indicate what the action is. We usually refer to the elements of *S* as **points**.

Write answers to the following questions:

- (1) Consider the set $S = \{1, ..., n\}$ and the **symmetric group** $S_n = \text{PERM}(S)$. Explain how S_n acts on S (on the left).
- (2) Let *S* be any set and *G* be any group. Define gs = s for every $g \in G$ and $s \in S$. Prove that this is a left action. This is called the **trivial** action.
- (3) Let $G = GL(2, \mathbb{R})$ be the group of invertible 2×2 matrices with real entries. Explain how *G* acts (non-trivially) on \mathbb{R}^2 .
- (4) Suppose that $G \cap S$ and that $s \in S$ is a **fixed point**. That is, a point $s \in S$ such that gs = s for every $g \in G$. Prove that $G \cap S \setminus \{s\}$.
- (5) Suppose that *G* acts on *S* on the left. For $g \in G$, let $\phi_g \colon S \to S$ be the function

$$\phi_g(s) = gs$$

Prove that ϕ_g is a permutation of *S* and that $g \mapsto \phi_g$ is a homomorphism of *G* into PERM(*S*).

- (6) Conversely, suppose that $\phi : G \to \text{PERM}(S)$ is a homomorphism from a group *G* into the group of permutations of some set *S*. Prove that the map $(g, s) \mapsto \phi(g)(s)$ defines a left group action.
- (7) Let *G* be a group with operation \circ and let *S* = *G*. Define **left multiplication** by

$$(g,s) = g \circ s$$

Prove that (letting $gs = g \circ s$) this is a left action of *G* on itself.

(8) Put the previous parts together to prove Cayley's Theorem: Every group is isomorphic to a subgroup of a permutation group.

3. The orbit-stabilizer theorem

Suppose that *G* acts on *S* on the left. For a given $s \in S$, the **orbit** of *s* is:

$$\operatorname{orb}(s) = \{s' \in S : \exists g \in G : s' = gs\}$$

Notice that $orb(s) \subset S$. It is the set of points to which *s* can move by applying elements of *G*. If we need to keep track of the group, we'll write $orb_G(s)$.

For $s \in S$, define the **stabilizer** of *s* to be

$$\operatorname{stab}(s) = \{g \in G : gs = s\}$$

Notice that $\operatorname{stab}(s) \subset G$. It is the set of elements of *G* which do not move the point *s*. If we need to keep track of the group, we'll write $\operatorname{stab}_G(s)$.

Write answers to the following. Assume throughout that $G \cap S$.

- (1) Prove that for every $s \in S$, the set stab(s) is a subgroup of G.
- (2) Suppose that $G \cap S$. Prove that $\{\operatorname{orb}(s) : s \in S\}$ is a partition of *S*.
- (3) Let $s \in S$. Find a bijection between $G/\operatorname{stab}(S)$ and $\operatorname{orb}(s)$.
- (4) Prove the **orbit-stabilizer** theorem: If *G* is a finite group acting on a set *S*, then for every $s \in S$:

 $|G| = |\operatorname{orb}(s)||\operatorname{stab}(s)|.$

(5) Suppose that *G* is a finite group acting on a finite set *S* such that the action does not have any fixed point (i.e. $A \in S$ s.t. stab(s) = G). Prove that if |G| is a power of a prime then |S| is a multiple of that prime.