
Spring 2018/MA 434 Group Project 5: Group actions on Graphs have
fundamental domains

Throughout, suppose that G is a group acting on a connected simple graph Γ . Assume, for simplicity,
that every vertex of Γ has finite degree and that Γ has countably many vertices. We consider Γ as a metric
space where every edge has length 1. Thus, it makes sense to talk about the midpoint of an edge.

We want to show that there is a subsetF ⊂ Γ which has the following properties:

(1) It is closed (in the sense of metric spaces)
(2) Its translates cover Γ . That is,

⋃

x∈F
orb(x ) = Γ .

(3) No proper subset ofF satisfies (1) and (2).

Our construction ofF proceeds algorithmically.

For each i ∈N, we’ll let Si be a list (i.e. finite sequence) of vertices to consider adding toF . We’ll let Fi be
the subgraph consisting of those vertices we’ve added toF along with all edges having both endpoints
in the set. We’ll define each Fi so that no two vertices are in the same orbit.

For any vertex w in Γ , let N (w ) be its neighbors in Γ .

I encourage you to draw a graph with a group action and follow along the following construction.

(1) Choose a vertex v ∈ Γ . Set F1 = {v }. Number the neighbors of v as v1, v2, . . . , vn . Add them one
at a time to the list S1, but obey the following rule: A vertex vi is added to S1 as long as it is not
in the orbit of any of the other vertices previously added to S1 and is also not in the orbit of v .

(2) Suppose that w is a neighbor of v which is in the orbit of v . Suppose that w ′ is a neighbor of w
which is not in the orbit of v . Prove that there is a neighbor v ′ of v which is not in the orbit of
v such that w ′ is in the orbit of v ′.

(3) Let F2 be the subgraph consisting of the vertex v and v1 and the edge between them. Remove
v1 from S1. Look at the list of neighbors of v1. Add them to the end of S1 to obtain the list S2, but
obey the following rule: A vertex is added to the list as long as it is not in the orbit of any other
vertex already in the list and is not in the orbit of any vertex in F2.

(4) Verify that no vertices in F1 or S2 are in the same orbit.

(5) Suppose that we have defined subgraphs

F1 ⊂ F2 ⊂ · · · ⊂ Fk

and lists

S1,S2, . . . ,Sk

as follows. For 2 ≤ i ≤ k , the subgraph Fi is obtained from Fi−1 by adding the first vertex w of
Si to Fi−1 along with any edges having both endpoints in Fi . The set Si is obtained from Si−1 by
removing the first element of Si−1 and adding vertices to the end of the list. The vertices we add
are those neighbors of w which are not in the orbit of any vertex of Fi or the vertices previously
added to the list.

Prove that no two vertices of the subgraph Fi are in the same orbit. Explain why this means that
no two edges of Fi are in the same orbit.
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(6) Explain how to define Fk+1 and Sk+1 so that the sequence can be continued. What, if anything,
might keep us from making this definition?

(7) By induction, we have a (possibly infinite) sequence of subgraphs

F1 ⊂ F2 ⊂ · · ·
Let F =
⋃

Fk be their union.

(a) Prove that F is a subgraph of Γ . (That is, explain why ever edge of F has both endpoints in
F .)

(b) Note that F is closed (all subgraphs are closed).
(c) Prove that no two vertices of F are in the same orbit.
(d) Prove that no two edges of F are in the same orbit.

(8) Prove that every vertex of Γ is in the orbit of some vertex of F .

(9) Consider the action of a cyclic group on a wheel with spokes. (For example
⊕

.) Show that it
may be the case that not every edge of G is in the orbit of F .

(10) Show how to add edges or half edges to F to obtain the desired setF .

(This project is based on material from John Meier’s Groups, Graphs, and Trees. )
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