
Free Groups

1. EXISTENCE OF FREE GROUPS

Let A be a set, called an alphabet. For each a ∈ A , let the symbol a−1 be called the inverse of a .
For simplicity, we assume that for all a ∈ A , a−1 /∈ A . We let a+1 = (a−1)−1 = a , for each a ∈ A . Let
A −1 = {a−1 : a ∈ A }. A word inA ∪A −1 is a finite sequence of elements ofA ∪A −1. The empty
word is the sequence with no terms. LetW be the set of all words inA ∪A −1. For each non-empty
word w ∈ W , there exist elements s1, . . . , sn ∈ A and ε1, . . . ,εn ∈ {−1,+1} such that w is the sequence
(s ε1

1 , s ε2
2 , . . . , s εn

n ). We write

w = s ε1
1 s ε2

2 · · · s
εn
n .

The length of w is equal to n .

Example 1.1. LetA = {a , b }. Here are some examples of words. They are all different.

• a
• b
• a b
• b a
• a a b
• a a b a−1

• a b b−1b b b b a a a a−1

Given words w = s ε1
1 s ε2

2 · · · s
εn
n and u = t δ1

1 t δ2
2 · · · t

δn
n , we define the concatenation to be the word

w u = s ε1
1 s ε2

2 · · · s
εn
n t δ1

1 t δ2
2 · · · t

δn
n

Observe that concatenation is an associative binary operation onW . We desire to turnW into a group
F (A ). It will be called the free group onA .

Suppose that w = s ε1
1 s ε2

2 · · · s
εn
n is a word such that there is a k ∈ {1, . . . , n − 1} with sk = sk+1 and εk =

−εk+1. That is, the k th letter of w is the inverse of the (k +1)st letter. Define the word:

w ′ = s ε1
1 s ε2

2 · · · s
εk−1
k−1 s εk+2

k+2 · · · s
εn
n

to be a reduction of w . If n = 2, then w ′ is the empty word. The inverse of reduction is insertion.

Define a relation∼ onW by declaring w ∼w ′ if w ′ is obtained from w by a finite sequence of deletions
and insertions. Observe that ∼ is an equivalence relation onW . Let F (A ) be the quotient set. Define
a binary operation, called concatenation, on F (A ) by

[u ][w ] = [u w ].

Lemma 1.2. Concatenation is well-defined on F (A ).

Proof. Suppose that u ∼ u ′ and w ∼ w ′. We must show that u w ∼ u ′w ′. Let α,β be the sequence
of reductions and insertions producing u ′ from u and w ′ from w , respectively. Observe that we can
apply α to the word u w to obtain u ′w . Similarly, we may apply β (or rather the sequence obtained
by shifting the indices in β by the length of u ′) to u ′w to obtain u ′w ′. Thus, there is a sequence of
reductions and insertions producing u ′w ′ from u w . Hence, u w ∼ u ′w ′. �

Theorem 1.3. The set F (A ) is a group with concatenation as the operation and the empty word as the
identity.
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Proof. Since concatenation is well-defined, F (A ) is closed under concatenation. Now we consider the
other group axioms. Let [1] ∈ F (G ) be the equivalence class of the empty word 1 ∈ W . InW , we have
u1= 1u = u for every u ∈W . Thus, passing to F (G ), the element [1] is an identity.

Let f ∈ F (G ). Choose w ∈W such that f = [w ] and write

w = s ε1
1 s ε2

2 · · · s
εn
n .

Define

w ′ = s−εn
n s−εn−1

n−1 · · · s−ε1
1 .

It’s easy to verify that there is a sequence of reductions of both w w ′ and w ′w to the empty word. Thus,
[w ]−1 = [w ′] in F (A ).

Finally, we consider associativity. Let f , g , h ∈ F (A ) and let u , v, w ∈W be words representing them.
Recall that (u v )w = u (v w ) = u v w inW since concatenation inW is obviously associative. Thus,

( f g )h = [u v ][w ] = [(u v )w ] = [u v w ].

Likewise,

f (g h ) = [u ][v w ] = [u (v w )] = [u v w ].

Thus, concatenation in F (A ) is associative and so F (A ) is a group. �

2. NORMAL FORMS

Notice that if w ′ is a reduction of w , then the length of w ′ is strictly less than the length of w . Since the
length of a word is a non-negative integer, we cannot perform infinitely reductions on a word. If w is a
word for which no reductions are possible, we say that w is a reduced word.

Question: Is it possible for there to be a word w and two sequences of reductions applied to w which
arrive at different reduced words?

For the purposes of this document, write w →w ′ if w ′ is a reduction of w . Observe that the relation→
makesW into a directed graph.

Lemma 2.1. Suppose that w is a word and that w1 and w2 are different reductions of w . Then there
exists a word u which is a reduction of both w1 and w2.

w

w1 w2

u

Proof. Let

w = s ε1
1 s ε2

2 · · · s
εn
n .

Since w has two different reductions, n ≥ 3. Suppose that w1 is obtained by cancelling s εk
k and s εk+1

k+1 =
s−εk

k and w2 is obtained by cancelling s ε`` and s ε`+1
`+1 = s−ε`` , with ` 6= k .

2



We claim that |k − `| ≥ 2. For simplicity, suppose that sk = a and εk = +1 and that k < `. If ` = k + 1,
then we have the subword

s εk
k s εk+1

k+1 s εk+2
k+2 = a a−1 a .

To form w1 we cancel the first two letters of the subword; to form w2, we cancel the second two. In
either case, we are left with just a . Consequently, w1 = w2. This contradicts our assumption that w1

and w2 are different. �

We can now prove an important “normal form” theorem for free groups.

Theorem 2.2 (Free Group Normal Form). Suppose that w ∈W . Then there exists a unique reduced word
w ′ such that w ′ is obtained by a sequence of reductions on w .

Proof. Existence follows from the fact that each reduction decreases the length of the word and that
the length of a word is a non-negative integer. We concentrate on showing uniqueness. We prove
uniqueness by induction on the length of w ∈W . If the length of w is 0, then w is the empty word. The
empty word is reduced and so the result follows.

Suppose that the theorem is true for all words of length at most k ∈ N∪ {0}. We prove it for words of
length k+1. Let w be a word of length k+1. If w is reduced, then it is the unique reduced word created
by a sequence of reductions applied to w ; we may assume, therefore, that w is not reduced. If there is
a unique word u obtained by reducing w , then the inductive hypothesis applied to u , guarantees that
there is a unique reduced word w ′ obtained by a sequence of reductions applied to u . Since every se-
quence of reductions applied to w passes through u , the word w ′ is the unique reduced word obtained
by a sequence of reductions on w .

Suppose, therefore, that w1 and w2 are distinct words, both obtained by a reduction of w . By the in-
ductive hypothesis applied to w1 and w2, there are unique reduced words w ′1 and w ′2 obtained by se-
quences of reductions applied to w1 and w2 respectively. We desire to show w ′1 = w ′2. By the lemma,
there is a word u obtained by reducing both w1 and w2. Choose a sequence α of reductions converting
u into a reduced word u ′. The reduction of w1 to u followed by α is a sequence of reductions applied
to w1 resulting in the reduced word u ′. Thus, u ′ =w ′1. Similarly, we may conclude that u ′ =w ′2. Hence,
w ′1 = w ′2. Since this applies to all distinct words obtained by reducing w , there is a unique reduced
word obtained by a sequence of reductions applied to w . By induction, the theorem holds. �

3. THE UNIVERSAL PROPERTY AND GROUP PRESENTATIONS

Let F be a group with S ⊂ F . We say that (F,S ) has the homomorphism extension universal property
if for every group G and every function φ : S → G , there is a unique homomorphism Òφ : F → G such
that Òφ(s ) =φ(s ) for every s ∈ S . In terms of commutative diagrams:

S

F G

inclusion
φ

Òφ

homomorphism

The idea behind this universal property is analogous to the process in linear algebra of definining linear
maps by specifying what they do on a basis. It turns out that free groups are exactly the groups with
the homomorophism extension universal property.
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Theorem 3.1. Suppose that (F,S )has the homomorphism extension universal property. Then there exists
an alphabetA and an isomorphism F → F (A ) taking S toA . Conversely, if F (A ) is the free group on
the alphabetA , then (F (A ),A ) has the homomorphism extension universal property.

Proof. We start by showing that each free group has the universal property. LetA be an alphabet and
F (A ) the free group onA . Let S (A ) = {[a ] : a ∈A } and suppose thatφ : S (A )→G is a function onto
some group G . Each element g ∈ F (A ) is represented by a unique reduced word

w = s ε1
1 s ε2

2 · · · s
εn
n

with si ∈A and εi ∈ {±1} for all i . Define

Òφ(g ) =φ(s1)
ε1φ(s2)

ε2 · · ·φ(sn )
εn .

Notice that Òφ extends φ and is well-defined and is a homomorphism. Since every homomorphism
must respect products and inverses, it is the unique homomorphism extending φ. Thus, (F (A ),A )
has desired universal property.

Now suppose that (F,S ) has the homomorphism extension universal property. LetA = S . We begin by
verifying that for all a ∈A = S , a−1 /∈A . Suppose, to the contrary, that a , a−1 ∈ S . Let G be the integers
with addition and define φ : S → Z by letting φ(a ) = +1 and φ(s ) = 0 for all s ∈ S \ {a }. If a 6= a−1, we
haveφ(a−1) = 0 butφ(a ) = 1. Since, 0 is not the inverse of 1 inZ, the functionφ cannot be extended to
a group homomorphism Òφ : F → Z. Similarly, if a = a−1, we have φ(a ) +φ(a−1) =φ(a ) +φ(a ) = 2 6= 0.
Thus, again, φ cannot be extended to a group homomorphism Òφ : F → Z. Thus,A is a permissible
alphabet.

By hypothesis, (F,S ) has the homomorphism extension universal property. Let φ : S → F (A ) be the
map defined by φ(s ) = [s ] for every s ∈ S . By definition, there exists a group homomorphism Òφ : F →
F (A ) extendingφ. We claim that Òφ is an isomorphism. We use the fact that (F (A ),A ) has the univer-
sal property.

For each a ∈A , letψ([a ]) = a ∈ S . Since each a ∈A is reduced, this is well-defined. Since (F (A ),S (A ))
satisfies the universal property, we can uniquely extendψ to a homomorphism Òψ : F (A )→ F . Observe
that Òψ◦Òφ : F → F is a homomorphism and that for each s ∈ S , Òψ◦Òφ(s ) = s . The identity map id: F → F
is also a group homomorphism taking each s ∈ S to itself. By the uniqueness of the extension of maps
S → S to homomorphisms F → F , we must have

Òψ ◦ Òφ = id .

Similarly, Òφ◦ Òψ : F (A )→ F (A ) is a group homomorphism taking each [a ] ∈ S (A ) to itself. The identity
is another such homomorphism. By uniqueness of extensions, Òφ ◦ Òψ= id. Thus, Òφ and Òψ are inverses
and so Òφ is an isomorphism. �

Corollary 3.2. Suppose that G is a group generated by S ⊂ G . LetW be the set of words inA ∪A −1

whereA = S . Then there exists a subset R ⊂W such that

G ∼=F (A )/〈R 〉

where 〈R 〉 is the smallest normal subgroup of G containing R .

In the context of the corollary we write G = 〈S |R 〉 and the set R is called a set of relations for G with re-
spect to the generating set S . The generating set S together with the relations R is called a presentation
of the group G . It is a finite presentation if both S and R are finite sets.
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Proof. Let S (A ) be the set of elements [a ] ∈ F (A ) such that a ∈A . Notice each a ∈ F (A ) is reduced.
Thus, the function φ : S (A )→ S defined by φ(a ) = a ∈ S ⊂ G for each a ∈ A is well-defined. Since
(F (A ),S (A )) has the universal property, the function φ extends to a homomorphism Òφ : F (A )→ G .
Let N be it’s kernel. Standard algebra shows that G ∼= F (A )/N . Let R be the set of reduced words
representing elements in N . Observe that N = 〈R 〉. �

In the previous proof, we took R to be the set of all reduced words representing elements of the kernel of
Òφ. Observe that if u , w ∈ R , then the reduced word representing [u w ] is also in R . But this is overkill,
since simply knowing that N is a subgroup is enough to guarantee that if u , w ∈ R then [u w ] ∈ N .
Generally, we want to take R to be as small as possible.

Definition. Suppose that G is a group and that N ÃG is a normal subgroup. A subset R ⊂N normally
generates N if whenever U ÍG is a normal subgroup such that R ⊂U then N <U .

The next lemma shows that normally generated subgroups exist.

Lemma 3.3. Suppose that G is a group and that R ⊂ G . Then there exists a normal subgroup N Ã G
such that N = 〈R 〉.

We say that N is the normal closure of R and that R normally generates N .

Proof. LetH be the set of all normal subgroups of G containing R as a subset. Since G ∈ H , the set
H is non-empty. Define N =

⋂

H∈H
H . Since the intersection of subgroups is always a subgroup, N is a

subgroup of G . We show that it is normal.

Let n ∈N and g ∈G . We must show g ng −1 ∈N . Since n ∈
⋂

H∈H
H , the element n ∈H for every H ∈H .

Since each H ∈H is normal, g ng −1 ∈H for every H ∈H . Consequently, g ng −1 ∈N .

Now we show that N is as small as possible. Suppose that U is a normal subgroup of G such that R ⊂U .
Then U ∈H . Since U is one of the subgroups in the intersection forming N , N <U . �

Corollary 3.4. Let S be a set and letW be the set of words in S and S−1. Then for every subset R ⊂W ,
there is a group

〈S |R 〉

Proof. LetA = S and let N be the normal closure of R . Then the group we are after isF (A )/N . �

Example 3.5. The group D∞ has presentation 〈a , b |a 2, b 2〉

Example 3.6. The group Z2 has presentation 〈a , b |a b a−1b−1〉.

Consider the following fundamental questions:

(1) (Triviality Problem) Given a group G with presentation 〈S |R 〉, is there an algorithm to determine
if G is the trivial group?

(2) (Isomorphism Problem - Tietz 1908) Given groups G = 〈S |R 〉 and G ′ = 〈S ′|R ′〉, is there an algo-
rithm to determine if G is isomorphic to G ′?

(3) (Word Problem - Dehn 1910) Given a group G = 〈S |R 〉 and a word w ∈ (S ∪ S−1)∗, is there an
algorithm to determine if [w ] = 1 in G ?

(4) (Conjugacy Problem - Dehn 1911) Given a group G = 〈S |R 〉 and words w , w ′ ∈ (S∪S−1)∗, is there
an algorithm to determine if [w ] is conjugate to [w ′] in G ?
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Observe that these problems are solvable for free groups with their usual presentation. However, Boone
and Novikov proved the word problem unsolvable in 1955/56.Tthe isomorphism problem was proved
unsolvable by Adian and Rabin (1958).

For more on the history and details on the constructions of Boone and Novikov (and others) see:

The word problem and the isomorphism problem for groups, John Stillwell. Bull. AMS (6) No. 1, 1982.
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