Free Groups

1. EXISTENCE OF FREE GROUPS

Let ./ be a set, called an alphabet. For each a € .¢/, let the symbol a~! be called the inverse of a.
For simplicity, we assume that forall a € ./, a™! ¢ .o/. Weleta™ =(a™')™! = a, for each a € .¢/. Let
drP={a"':ae.d}. Awordin .o/ U.¢/7! is a finite sequence of elements of ./ U.¢/!. The empty
word is the sequence with no terms. Let # be the set of all words in ./ U.</!. For each non-empty
word w € ¥/, there exist elements s,...,s, € ./ and €3,...,€, € {—1,+1} such that w is the sequence
(5%, 852,..,5"). We write

€1 €2

e .o €
W=s 525"

n

The length of w is equal to n.

Example 1.1. Let .« ={a, b}. Here are some examples of words. They are all different.

e a
oD

e ab

e ba

e aab

e aaba™!

e abb~'bbbbaaaa™!

€1 €2 o

Given words w = s;'s,%-+-sp," and u =1, * t25 2...t2", we define the concatenation to be the word

€ 51 52 5
Snntl t2 ...tnn

— €162,
wu=s":s,

Observe that concatenation is an associative binary operation on . We desire to turn # into a group
F(.«7). It will be called the free group on .</.

Suppose that w = sflszez---s,‘i” is a word such that thereisa k € {1,...,n— 1} with s = s, and €, =

—€r4+1- Thatis, the kth letter of w is the inverse of the (k + 1)st letter. Define the word:

€1 €2, €k—1 Ck+2 |

/ .. €
w'=s's,°"5 s s."

k+2 " °n
to be a reduction of w. If n =2, then w’ is the empty word. The inverse of reduction is insertion.

Define a relation ~ on # by declaring w ~ w’ if w’ is obtained from w by a finite sequence of deletions
and insertions. Observe that ~ is an equivalence relation on #’. Let F(.</) be the quotient set. Define
a binary operation, called concatenation, on F(.</) by

[ullw]=[uw].

Lemma 1.2. Concatenation is well-defined on F(.«/).

Proof. Suppose that u ~ u’ and w ~ w’. We must show that uw ~ u’w’. Let a, B be the sequence
of reductions and insertions producing u’ from u and w’ from w, respectively. Observe that we can
apply a to the word uw to obtain u’w. Similarly, we may apply 8 (or rather the sequence obtained
by shifting the indices in § by the length of u’) to u’w to obtain u’w’. Thus, there is a sequence of
reductions and insertions producing u’w’ from uw. Hence, uw ~ u’w’. O

Theorem 1.3. The set F(.</) is a group with concatenation as the operation and the empty word as the
identity.



Proof. Since concatenation is well-defined, F(.</)is closed under concatenation. Now we consider the
other group axioms. Let [1] € F(G) be the equivalence class of the empty word 1 € #. In #/, we have
ul=1u=u for every u € #. Thus, passing to F(G), the element [1] is an identity.

Let f € F(¥). Choose w € # such that f =[w] and write

— 162 €
W=S8 8" -8.".
Define
I T€n T CEn1 €1
w =s,""s, | s L

It's easy to verify that there is a sequence of reductions of both w w’ and w’w to the empty word. Thus,
[w]™ =[w’]in F(.</).

Finally, we consider associativity. Let f,g,h € F(.</) and let u, v, w € W be words representing them.
Recall that (uv)w = u(vw)=uvw in # since concatenation in # is obviously associative. Thus,

(fg)h=[luvw]=[(uv)w]=[uvw].

Likewise,
flgh)=[ullvw]=[u(vw)]=[uvw].

Thus, concatenation in F(.¢f) is associative and so F(.¢f) is a group. O

2. NORMAL FORMS

Notice that if w’ is a reduction of w, then the length of w’ is strictly less than the length of w. Since the
length of a word is a non-negative integer, we cannot perform infinitely reductions on a word. If w is a
word for which no reductions are possible, we say that w is a reduced word.

Question: Is it possible for there to be a word w and two sequences of reductions applied to w which
arrive at different reduced words?

For the purposes of this document, write w — w’ if w’ is a reduction of w. Observe that the relation —
makes # into a directed graph.

Lemma 2.1. Suppose that w is a word and that w; and w, are different reductions of w. Then there
exists a word u which is a reduction of both w; and w;,.

w
wr 2%
N
u
Proof. Let
— €162 . €p
w=s's, s,"

€k+1
k+1

Since w has two different reductions, n > 3. Suppose that w; is obtained by cancelling s; “and s
s, © and w, is obtained by cancelling s;* and sff: =5, with € #k.
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We claim that |k —¥¢| > 2. For simplicity, suppose that s; =a and €, =+1 and that k < /. If £ =k + 1,
then we have the subword

ssitsity —aala,
To form w; we cancel the first two letters of the subword; to form w,, we cancel the second two. In
either case, we are left with just a. Consequently, w; = w,. This contradicts our assumption that w,
and w, are different. O

We can now prove an important “normal form” theorem for free groups.

Theorem 2.2 (Free Group Normal Form). Suppose that w € ‘# . Then there exists a unique reduced word
w’ such that w’ is obtained by a sequence of reductions on w.

Proof. Existence follows from the fact that each reduction decreases the length of the word and that
the length of a word is a non-negative integer. We concentrate on showing uniqueness. We prove
uniqueness by induction on the length of w € #'. If the length of w is 0, then w is the empty word. The
empty word is reduced and so the result follows.

Suppose that the theorem is true for all words of length at most k € NU {0}. We prove it for words of
length k+1. Let w be aword of length k+1. If w is reduced, then it is the unique reduced word created
by a sequence of reductions applied to w; we may assume, therefore, that w is not reduced. If there is
aunique word u obtained by reducing w, then the inductive hypothesis applied to u, guarantees that
there is a unique reduced word w’ obtained by a sequence of reductions applied to u. Since every se-
quence of reductions applied to w passes through u, the word w’ is the unique reduced word obtained
by a sequence of reductions on w.

Suppose, therefore, that w;, and w», are distinct words, both obtained by a reduction of w. By the in-
ductive hypothesis applied to w; and w,, there are unique reduced words w; and w, obtained by se-
quences of reductions applied to w; and w, respectively. We desire to show w; = w,. By the lemma,
there is a word u obtained by reducing both w; and w,. Choose a sequence « of reductions converting
u into a reduced word u’. The reduction of w; to u followed by « is a sequence of reductions applied
to w, resulting in the reduced word u’. Thus, u’ = w;. Similarly, we may conclude that u’ = w,. Hence,
w; = w,. Since this applies to all distinct words obtained by reducing w, there is a unique reduced
word obtained by a sequence of reductions applied to w. By induction, the theorem holds. O

3. THE UNIVERSAL PROPERTY AND GROUP PRESENTATIONS

Let F be a group with S ¢ F. We say that (F, S) has the homomorphism extension universal property
if for every group G and every function ¢: S — G, there is a unique homomorphism ¢: F — G such
that ¢(s) = ¢(s) for every s € S. In terms of commutative diagrams:

S
o l ¢
inclusion ~
homomorphism

The idea behind this universal property is analogous to the process in linear algebra of definining linear
maps by specifying what they do on a basis. It turns out that free groups are exactly the groups with
the homomorophism extension universal property.
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Theorem 3.1. Suppose that(F,S) has the homomorphism extension universal property. Then there exists
an alphabet ./ and an isomorphism F — F(.</) taking S to .«/ . Conversely, if F(.</) is the free group on
the alphabet </ , then (F(.</), </ ) has the homomorphism extension universal property.

Proof. We start by showing that each free group has the universal property. Let .</ be an alphabet and
F(.¢/) the free group on .«/. Let S(.«/) = {[a]: a € .¢/} and suppose that ¢ : S(.¢/) — G is a function onto
some group G. Each element g € F(.«/) is represented by a unique reduced word

€162 €y
W=S8 878,

with s; € .¢/ and €; € {£1} for all i. Define

P(8)= (1) P(52)% - P(s,)

Notice that $ extends ¢ and is well-defined and is a homomorphism. Since every homomorphism
must respect products and inverses, it is the unique homomorphism extending ¢. Thus, (F(.</),.</)
has desired universal property.

Now suppose that (F, S) has the homomorphism extension universal property. Let ./ = S. We begin by
verifying that forall a € .o/ =S, a™' ¢ .</. Suppose, to the contrary, thata,a™! € S. Let G be the integers
with addition and define ¢: S — Z by letting ¢(a) = +1 and ¢(s)=0forall s € S\ {a}. If a # a™!, we
have ¢(a~')=0but ¢(a) = 1. Since, 0 is not the inverse of 1 in Z, the function ¢ cannot be extended to
a group homomorphism ¢ : F — Z. Similarly, if @ = a™!, we have ¢(a)+ ¢(a™')= ¢p(a)+ ¢(a) =2 #0.
Thus, again, ¢ cannot be extended to a group homomorphism 5 : F — Z. Thus, .«/ is a permissible
alphabet.

By hypothesis, (F, S) has the homomorphism extension universal property. Let ¢: S — F(.</) be the
map defined by ¢(s) =[s] for every s € S. By definition, there exists a group homomorphism fﬁ :F—
F(./) extending ¢. We claim that ¢ is an isomorphism. We use the fact that (F(.¢/), .¢/) has the univer-
sal property.

Foreacha €.¢/,lety([a])=a € S. Since each a € .«/ isreduced, this is well-defined. Since (F(.<f), S(.</))
satisfies the universal property, we can uniquely extend ) to a homomorphism 17; : F(.¢/)— F. Observe
that 1/70 5: F — F isahomomorphism and that for each s € S, 1/70 a(s) =s. Theidentitymapid: F — F

is also a group homomorphism taking each s € S to itself. By the uniqueness of the extension of maps
S — S to homomorphisms F — F, we must have

$o$:id.

Similarly, fﬁ {/; F(.o/)— F(.¢/)is a group homomorphism takmg each [a] € S(.&/) to itself. The identity
is another such homomorphism. By uniqueness of extensions, ¢ 1,0 =id. Thus, ¢ and 1,[1 are inverses
and so ¢ is an isomorphism. O

Corollary 3.2. Suppose that G is a group generated by S ¢ G. Let # be the set of words in ./ U.o/ ™!
where .of = S. Then there exists a subset R C # such that

G = Z(d)/(R)

where (R) is the smallest normal subgroup of G containing R.

In the context of the corollary we write G = (S|R) and the set R is called a set of relations for G with re-
spect to the generating set S. The generating set S together with the relations R is called a presentation

of the group G. It is a finite presentation if both S and R are finite sets.
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Proof. Let S(.</) be the set of elements [a] € F(.«/) such that a € .«/. Notice each a € F(.</) is reduced.
Thus, the function ¢: S(.</) — S defined by ¢(a) = a € S € G for each a € .«/ is well-defined. Since
(F(./),S(.¢/)) has the universal property, the function ¢ extends to a homomorphism a : F()— G.
Let N be it’s kernel. Standard algebra shows that G = F(.¢/)/N. Let R be the set of reduced words
representing elements in N. Observe that N = (R). O

In the previous proof, we took R to be the set of all reduced words representing elements of the kernel of
a . Observe that if u, w € R, then the reduced word representing [uw] is also in R. But this is overkill,
since simply knowing that N is a subgroup is enough to guarantee that if u, w € R then [uw] € N.
Generally, we want to take R to be as small as possible.

Definition. Suppose that G is a group and that N < G is a normal subgroup. A subset R € N normally
generates N if whenever U A G is a normal subgroup such that R c U then N < U.

The next lemma shows that normally generated subgroups exist.

Lemma 3.3. Suppose that G is a group and that R ¢ G. Then there exists a normal subgroup N < G
such that N = (R).

We say that N is the normal closure of R and that R normally generates N.

Proof. Let 7 be the set of all normal subgroups of G containing R as a subset. Since G € 2, the set

# is non-empty. Define N = (] H. Since the intersection of subgroups is always a subgroup, N is a
Hest
subgroup of G. We show that it is normal.

Letn € N and g € G. We mustshow gng™' € N. Sincene€ (| H,theelementn € H forevery H € .
Hex
Since each H € ;¢ is normal, gng—' € H for every H € #. Consequently, gng~' € N.

Now we show that N is as small as possible. Suppose that U is a normal subgroup of G such that R c U.
Then U € 7. Since U is one of the subgroups in the intersection forming N, N < U. O

Corollary 3.4. Let S be a set and let # be the set of words in S and S™!. Then for every subset R C #/,
there is a group

(SIR)

Proof. Let.o/ =S and let N be the normal closure of R. Then the group we are after is #(.</)/N. ]
Example 3.5. The group D, has presentation {(a, b|a?, b?)

Example 3.6. The group Z? has presentation {(a, blaba~'b7!).

Consider the following fundamental questions:

(1) (Triviality Problem) Given a group G with presentation (S|R), is there an algorithm to determine
if G is the trivial group?

(2) (Isomorphism Problem - Tietz 1908) Given groups G = (S|R) and G’ = (S’|R’), is there an algo-
rithm to determine if G is isomorphic to G2

(3) (Word Problem - Dehn 1910) Given a group G = (S|R) and a word w € (SUS™1)*, is there an
algorithm to determine if [w] =1 in G?

(4) (Conjugacy Problem - Dehn 1911) Given a group G = (S|R) and words w, w’ € (SUS™!)*, is there
an algorithm to determine if [w] is conjugate to [w’] in G?
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Observe that these problems are solvable for free groups with their usual presentation. However, Boone
and Novikov proved the word problem unsolvable in 1955/56.Tthe isomorphism problem was proved
unsolvable by Adian and Rabin (1958).

For more on the history and details on the constructions of Boone and Novikov (and others) see:

The word problem and the isomorphism problem for groups, John Stillwell. Bull. AMS (6) No. 1, 1982.
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