Free Groups

1. EXISTENCE OF FREE GROUPS

Let \mathscr{A} be a set, called an **alphabet**. For each $a \in \mathscr{A}$, let the symbol a^{-1} be called the **inverse** of a. For simplicity, we assume that for all $a \in \mathscr{A}$, $a^{-1} \notin \mathscr{A}$. We let $a^{+1} = (a^{-1})^{-1} = a$, for each $a \in \mathscr{A}$. Let $\mathscr{A}^{-1} = \{a^{-1} : a \in \mathscr{A}\}$. A **word** in $\mathscr{A} \cup \mathscr{A}^{-1}$ is a finite sequence of elements of $\mathscr{A} \cup \mathscr{A}^{-1}$. The **empty word** is the sequence with no terms. Let \mathscr{W} be the set of all words in $\mathscr{A} \cup \mathscr{A}^{-1}$. For each non-empty word $w \in \mathscr{W}$, there exist elements $s_1, \ldots, s_n \in \mathscr{A}$ and $\epsilon_1, \ldots, \epsilon_n \in \{-1, +1\}$ such that w is the sequence $(s_1^{\epsilon_1}, s_2^{\epsilon_2}, \ldots, s_n^{\epsilon_n})$. We write

$$w = s_1^{\epsilon_1} s_2^{\epsilon_2} \cdots s_n^{\epsilon_n}.$$

The **length** of *w* is equal to *n*.

Example 1.1. Let $\mathcal{A} = \{a, b\}$. Here are some examples of words. They are all different.

- a
- b
- ab
- *ba*
- aab
- $aaba^{-1}$
- *abb*⁻¹*bbbbaaaa*⁻¹

Given words $w = s_1^{\epsilon_1} s_2^{\epsilon_2} \cdots s_n^{\epsilon_n}$ and $u = t_1^{\delta_1} t_2^{\delta_2} \cdots t_n^{\delta_n}$, we define the **concatenation** to be the word

$$w \, u = s_1^{\epsilon_1} s_2^{\epsilon_2} \cdots s_n^{\epsilon_n} t_1^{\delta_1} t_2^{\delta_2} \cdots t_n^{\delta_n}$$

Observe that concatenation is an associative binary operation on \mathcal{W} . We desire to turn \mathcal{W} into a group $F(\mathcal{A})$. It will be called the **free group** on \mathcal{A} .

Suppose that $w = s_1^{\epsilon_1} s_2^{\epsilon_2} \cdots s_n^{\epsilon_n}$ is a word such that there is a $k \in \{1, ..., n-1\}$ with $s_k = s_{k+1}$ and $\epsilon_k = -\epsilon_{k+1}$. That is, the *k*th letter of *w* is the inverse of the (k+1)st letter. Define the word:

$$w' = s_1^{e_1} s_2^{e_2} \cdots s_{k-1}^{e_{k-1}} s_{k+2}^{e_{k+2}} \cdots s_n^{e_n}$$

to be a **reduction** of w. If n = 2, then w' is the empty word. The inverse of reduction is **insertion**.

Define a relation ~ on \mathcal{W} by declaring $w \sim w'$ if w' is obtained from w by a finite sequence of deletions and insertions. Observe that ~ is an equivalence relation on \mathcal{W} . Let $F(\mathcal{A})$ be the quotient set. Define a binary operation, called **concatenation**, on $F(\mathcal{A})$ by

$$[u][w] = [uw].$$

Lemma 1.2. Concatenation is well-defined on $F(\mathcal{A})$.

Proof. Suppose that $u \sim u'$ and $w \sim w'$. We must show that $uw \sim u'w'$. Let α, β be the sequence of reductions and insertions producing u' from u and w' from w, respectively. Observe that we can apply α to the word uw to obtain u'w. Similarly, we may apply β (or rather the sequence obtained by shifting the indices in β by the length of u') to u'w to obtain u'w'. Thus, there is a sequence of reductions and insertions producing u'w' from uw. Hence, $uw \sim u'w'$.

Theorem 1.3. The set $F(\mathcal{A})$ is a group with concatenation as the operation and the empty word as the *identity*.

Proof. Since concatenation is well-defined, $F(\mathcal{A})$ is closed under concatenation. Now we consider the other group axioms. Let $[1] \in F(G)$ be the equivalence class of the empty word $1 \in \mathcal{W}$. In \mathcal{W} , we have u1 = 1u = u for every $u \in \mathcal{W}$. Thus, passing to F(G), the element [1] is an identity.

Let $f \in F(\mathcal{G})$. Choose $w \in \mathcal{W}$ such that f = [w] and write

$$w = s_1^{\epsilon_1} s_2^{\epsilon_2} \cdots s_n^{\epsilon_n}.$$

Define

$$w' = s_n^{-\epsilon_n} s_{n-1}^{-\epsilon_{n-1}} \cdots s_1^{-\epsilon_1}$$

It's easy to verify that there is a sequence of reductions of both w w' and w'w to the empty word. Thus, $[w]^{-1} = [w']$ in $F(\mathscr{A})$.

Finally, we consider associativity. Let $f, g, h \in F(\mathcal{A})$ and let $u, v, w \in W$ be words representing them. Recall that (uv)w = u(vw) = uvw in \mathcal{W} since concatenation in \mathcal{W} is obviously associative. Thus,

$$(fg)h = [uv][w] = [(uv)w] = [uvw]$$

Likewise,

$$f(gh) = [u][vw] = [u(vw)] = [uvw].$$

Thus, concatenation in $F(\mathscr{A})$ is associative and so $F(\mathscr{A})$ is a group.

2. NORMAL FORMS

Notice that if w' is a reduction of w, then the length of w' is strictly less than the length of w. Since the length of a word is a non-negative integer, we cannot perform infinitely reductions on a word. If w is a word for which no reductions are possible, we say that *w* is a **reduced** word.

Question: Is it possible for there to be a word w and two sequences of reductions applied to w which arrive at *different* reduced words?

For the purposes of this document, write $w \to w'$ if w' is a reduction of w. Observe that the relation \to makes *W* into a directed graph.

Lemma 2.1. Suppose that w is a word and that w_1 and w_2 are different reductions of w. Then there exists a word u which is a reduction of both w_1 and w_2 .

Proof. Let

$$w = s_1^{\epsilon_1} s_2^{\epsilon_2} \cdots s_n^{\epsilon_n}.$$

Since *w* has two different reductions, $n \ge 3$. Suppose that w_1 is obtained by cancelling $s_k^{\epsilon_k}$ and $s_{k+1}^{\epsilon_{k+1}} =$ Since *w* has two different reductions, w = 0 and $s_{\ell+1} = s_{\ell}^{-\epsilon_{\ell}}$, with $\ell \neq k$.

We claim that $|k - \ell| \ge 2$. For simplicity, suppose that $s_k = a$ and $\epsilon_k = +1$ and that $k < \ell$. If $\ell = k + 1$, then we have the subword

$$s_k^{\epsilon_k} s_{k+1}^{\epsilon_{k+1}} s_{k+2}^{\epsilon_{k+2}} = a a^{-1} a.$$

To form w_1 we cancel the first two letters of the subword; to form w_2 , we cancel the second two. In either case, we are left with just *a*. Consequently, $w_1 = w_2$. This contradicts our assumption that w_1 and w_2 are different.

We can now prove an important "normal form" theorem for free groups.

Theorem 2.2 (Free Group Normal Form). Suppose that $w \in W$. Then there exists a unique reduced word w' such that w' is obtained by a sequence of reductions on w.

Proof. Existence follows from the fact that each reduction decreases the length of the word and that the length of a word is a non-negative integer. We concentrate on showing uniqueness. We prove uniqueness by induction on the length of $w \in \mathcal{W}$. If the length of w is 0, then w is the empty word. The empty word is reduced and so the result follows.

Suppose that the theorem is true for all words of length at most $k \in \mathbb{N} \cup \{0\}$. We prove it for words of length k+1. Let w be a word of length k+1. If w is reduced, then it is the unique reduced word created by a sequence of reductions applied to w; we may assume, therefore, that w is not reduced. If there is a unique word u obtained by reducing w, then the inductive hypothesis applied to u, guarantees that there is a unique reduced word w' obtained by a sequence of reductions applied to u by a sequence of reductions applied to w passes through u, the word w' is the unique reduced word obtained by a sequence of reductions applied to w passes through u, the word w' is the unique reduced word obtained by a sequence of reductions applied to w.

Suppose, therefore, that w_1 and w_2 are distinct words, both obtained by a reduction of w. By the inductive hypothesis applied to w_1 and w_2 , there are unique reduced words w'_1 and w'_2 obtained by sequences of reductions applied to w_1 and w_2 respectively. We desire to show $w'_1 = w'_2$. By the lemma, there is a word u obtained by reducing both w_1 and w_2 . Choose a sequence α of reductions converting u into a reduced word u'. The reduction of w_1 to u followed by α is a sequence of reductions applied to w_1 resulting in the reduced word u'. Thus, $u' = w'_1$. Similarly, we may conclude that $u' = w'_2$. Hence, $w'_1 = w'_2$. Since this applies to all distinct words obtained by reducing w, there is a unique reduced word obtained by a sequence of reductions applied to w. By induction, the theorem holds.

3. THE UNIVERSAL PROPERTY AND GROUP PRESENTATIONS

Let *F* be a group with $S \subset F$. We say that (F, S) has the **homomorphism extension universal property** if for every group *G* and every function $\phi : S \to G$, there is a *unique* homomorphism $\widehat{\phi} : F \to G$ such that $\widehat{\phi}(s) = \phi(s)$ for every $s \in S$. In terms of commutative diagrams:

The idea behind this universal property is analogous to the process in linear algebra of definining linear maps by specifying what they do on a basis. It turns out that free groups are exactly the groups with the homomorphism extension universal property.

Theorem 3.1. Suppose that (F, S) has the homomorphism extension universal property. Then there exists an alphabet \mathcal{A} and an isomorphism $F \to F(\mathcal{A})$ taking S to \mathcal{A} . Conversely, if $F(\mathcal{A})$ is the free group on the alphabet \mathcal{A} , then $(F(\mathcal{A}), \mathcal{A})$ has the homomorphism extension universal property.

Proof. We start by showing that each free group has the universal property. Let \mathscr{A} be an alphabet and $F(\mathscr{A})$ the free group on \mathscr{A} . Let $S(\mathscr{A}) = \{[a] : a \in \mathscr{A}\}$ and suppose that $\phi : S(\mathscr{A}) \to G$ is a function onto some group *G*. Each element $g \in F(\mathscr{A})$ is represented by a unique reduced word

$$w = s_1^{\epsilon_1} s_2^{\epsilon_2} \cdots s_n^{\epsilon_n}$$

with $s_i \in \mathcal{A}$ and $e_i \in \{\pm 1\}$ for all *i*. Define

$$\widehat{\phi}(g) = \phi(s_1)^{\epsilon_1} \phi(s_2)^{\epsilon_2} \cdots \phi(s_n)^{\epsilon_n}$$

Notice that $\widehat{\phi}$ extends ϕ and is well-defined and is a homomorphism. Since every homomorphism must respect products and inverses, it is the unique homomorphism extending ϕ . Thus, $(F(\mathcal{A}), \mathcal{A})$ has desired universal property.

Now suppose that (F, S) has the homomorphism extension universal property. Let $\mathscr{A} = S$. We begin by verifying that for all $a \in \mathscr{A} = S$, $a^{-1} \notin \mathscr{A}$. Suppose, to the contrary, that $a, a^{-1} \in S$. Let G be the integers with addition and define $\phi: S \to \mathbb{Z}$ by letting $\phi(a) = +1$ and $\phi(s) = 0$ for all $s \in S \setminus \{a\}$. If $a \neq a^{-1}$, we have $\phi(a^{-1}) = 0$ but $\phi(a) = 1$. Since, 0 is not the inverse of 1 in \mathbb{Z} , the function ϕ cannot be extended to a group homomorphism $\widehat{\phi}: F \to \mathbb{Z}$. Similarly, if $a = a^{-1}$, we have $\phi(a) + \phi(a^{-1}) = \phi(a) + \phi(a) = 2 \neq 0$. Thus, again, ϕ cannot be extended to a group homomorphism $\widehat{\phi}: F \to \mathbb{Z}$. Thus, \mathscr{A} is a permissible alphabet.

By hypothesis, (F, S) has the homomorphism extension universal property. Let $\phi : S \to F(\mathscr{A})$ be the map defined by $\phi(s) = [s]$ for every $s \in S$. By definition, there exists a group homomorphism $\widehat{\phi} : F \to F(\mathscr{A})$ extending ϕ . We claim that $\widehat{\phi}$ is an isomorphism. We use the fact that $(F(\mathscr{A}), \mathscr{A})$ has the universal property.

For each $a \in \mathcal{A}$, let $\psi([a]) = a \in S$. Since each $a \in \mathcal{A}$ is reduced, this is well-defined. Since $(F(\mathcal{A}), S(\mathcal{A}))$ satisfies the universal property, we can uniquely extend ψ to a homomorphism $\widehat{\psi} : F(\mathcal{A}) \to F$. Observe that $\widehat{\psi} \circ \widehat{\phi} : F \to F$ is a homomorphism and that for each $s \in S$, $\widehat{\psi} \circ \widehat{\phi}(s) = s$. The identity map id: $F \to F$ is also a group homomorphism taking each $s \in S$ to itself. By the uniqueness of the extension of maps $S \to S$ to homomorphisms $F \to F$, we must have

$$\widehat{\psi} \circ \widehat{\phi} = \mathrm{id}$$

Similarly, $\widehat{\phi} \circ \widehat{\psi}$: $F(\mathscr{A}) \to F(\mathscr{A})$ is a group homomorphism taking each $[a] \in S(\mathscr{A})$ to itself. The identity is another such homomorphism. By uniqueness of extensions, $\widehat{\phi} \circ \widehat{\psi} = \text{id.}$ Thus, $\widehat{\phi}$ and $\widehat{\psi}$ are inverses and so $\widehat{\phi}$ is an isomorphism.

Corollary 3.2. Suppose that *G* is a group generated by $S \subset G$. Let \mathscr{W} be the set of words in $\mathscr{A} \cup \mathscr{A}^{-1}$ where $\mathscr{A} = S$. Then there exists a subset $R \subset \mathscr{W}$ such that

$$G \cong \mathscr{F}(\mathscr{A})/\langle R \rangle$$

where $\langle R \rangle$ is the smallest normal subgroup of *G* containing *R*.

In the context of the corollary we write $G = \langle S | R \rangle$ and the set *R* is called a set of **relations** for *G* with respect to the generating set *S*. The generating set *S* together with the relations *R* is called a **presentation** of the group *G*. It is a **finite presentation** if both *S* and *R* are finite sets.

Proof. Let $S(\mathscr{A})$ be the set of elements $[a] \in F(\mathscr{A})$ such that $a \in \mathscr{A}$. Notice each $a \in F(\mathscr{A})$ is reduced. Thus, the function $\phi: S(\mathscr{A}) \to S$ defined by $\phi(a) = a \in S \subset G$ for each $a \in \mathscr{A}$ is well-defined. Since $(F(\mathscr{A}), S(\mathscr{A}))$ has the universal property, the function ϕ extends to a homomorphism $\widehat{\phi}: F(\mathscr{A}) \to G$. Let *N* be it's kernel. Standard algebra shows that $G \cong F(\mathscr{A})/N$. Let *R* be the set of reduced words representing elements in *N*. Observe that $N = \langle R \rangle$.

In the previous proof, we took *R* to be the set of all reduced words representing elements of the kernel of $\widehat{\phi}$. Observe that if $u, w \in R$, then the reduced word representing [uw] is also in *R*. But this is overkill, since simply knowing that *N* is a subgroup is enough to guarantee that if $u, w \in R$ then $[uw] \in N$. Generally, we want to take *R* to be as small as possible.

Definition. Suppose that *G* is a group and that $N \triangleleft G$ is a normal subgroup. A subset $R \subset N$ **normally generates** *N* if whenever $U \bigtriangleup G$ is a normal subgroup such that $R \subset U$ then N < U.

The next lemma shows that normally generated subgroups exist.

Lemma 3.3. Suppose that *G* is a group and that $R \subset G$. Then there exists a normal subgroup $N \triangleleft G$ such that $N = \langle R \rangle$.

We say that *N* is the **normal closure** of *R* and that *R* **normally generates** *N*.

Proof. Let \mathcal{H} be the set of all normal subgroups of G containing R as a subset. Since $G \in \mathcal{H}$, the set \mathcal{H} is non-empty. Define $N = \bigcap_{H \in \mathcal{H}} H$. Since the intersection of subgroups is always a subgroup, N is a subgroup of G. We show that it is normal.

Let $n \in N$ and $g \in G$. We must show $gng^{-1} \in N$. Since $n \in \bigcap_{H \in \mathcal{H}} H$, the element $n \in H$ for every $H \in \mathcal{H}$. Since each $H \in \mathcal{H}$ is normal, $gng^{-1} \in H$ for every $H \in \mathcal{H}$. Consequently, $gng^{-1} \in N$.

Now we show that *N* is as small as possible. Suppose that *U* is a normal subgroup of *G* such that $R \subset U$. Then $U \in \mathcal{H}$. Since *U* is one of the subgroups in the intersection forming *N*, *N* < *U*.

Corollary 3.4. Let *S* be a set and let \mathcal{W} be the set of words in *S* and S^{-1} . Then for every subset $R \subset \mathcal{W}$, there is a group

 $\langle S|R\rangle$

Proof. Let $\mathscr{A} = S$ and let *N* be the normal closure of *R*. Then the group we are after is $\mathscr{F}(\mathscr{A})/N$.

Example 3.5. The group D_{∞} has presentation $\langle a, b | a^2, b^2 \rangle$

Example 3.6. The group \mathbb{Z}^2 has presentation $\langle a, b | a b a^{-1} b^{-1} \rangle$.

Consider the following fundamental questions:

- (1) (Triviality Problem) Given a group *G* with presentation $\langle S|R \rangle$, is there an algorithm to determine if *G* is the trivial group?
- (2) (Isomorphism Problem Tietz 1908) Given groups $G = \langle S|R \rangle$ and $G' = \langle S'|R' \rangle$, is there an algorithm to determine if *G* is isomorphic to *G*'?
- (3) (Word Problem Dehn 1910) Given a group $G = \langle S|R \rangle$ and a word $w \in (S \cup S^{-1})^*$, is there an algorithm to determine if [w] = 1 in *G*?
- (4) (Conjugacy Problem Dehn 1911) Given a group $G = \langle S|R \rangle$ and words $w, w' \in (S \cup S^{-1})^*$, is there an algorithm to determine if [w] is conjugate to [w'] in G?

Observe that these problems are solvable for free groups with their usual presentation. However, Boone and Novikov proved the word problem unsolvable in 1955/56. The isomorphism problem was proved unsolvable by Adian and Rabin (1958).

For more on the history and details on the constructions of Boone and Novikov (and others) see:

The word problem and the isomorphism problem for groups, John Stillwell. *Bull. AMS* (6) No. 1, 1982.