Consider the set of integers \mathbb{Z}.
(1) For integers x and y, define the symbol $x \equiv_{5} y$ to mean that $x-y$ is a multiple of 5. More precisely, $x \equiv_{5} y$ if and only if there is an integer $n \in \mathbb{Z}$ such that

$$
x-y=5 n .
$$

Explain why the following are true:
(a) For every $x \in \mathbb{Z}, x \equiv_{5} x$. (To show this, you need to specify what value of n makes it so that $x-x=5 n$.)
(b) For every $x, y \in \mathbb{Z}$, if $x \equiv_{5} y$, then also $y \equiv_{5} x$. (You get to assume there is an n so that $x-y=5 n$. You need to show that $y \equiv_{5} x$.)
(c) For every $x, y, z \in \mathbb{Z}$, if $x \equiv_{5} y$ and $y \equiv_{5} z$, then $x \equiv_{5} z$.
(2) List all (or list some and say what the pattern is) the integers y such that $0 \equiv_{5} y$.
(3) List all the integers y such that $1 \equiv_{5} y$.
(4) List all the integers y such that $2 \equiv_{5} y$.
(5) List all the integers y such that $3 \equiv_{5} y$.
(6) List all the integers y such that $4 \equiv_{5} y$.
(7) List all the integers y such that $5 \equiv_{5} y$.
(8) Which of the sets you listed in (2)-(7) contains the number 1283? what about 1285 ?
(9) For an integer $p \in \mathbb{Z}$, define the notation $x \equiv_{p} y$ to mean that $x-y$ is a multiple of p. What has to change in your proofs from (1) if, in the statements, we change the number 5 to the number p ?
(10) For an integer $x \in \mathbb{Z}$, let $[x]_{p}$ be the set of all integers y, such that $x \equiv_{p} y$. Show that if a, b, c are integers such that $c \in[a]_{p}$ and $c \in[b]_{p}$, then $a \equiv_{p} b$.

For your presentation, explain your answers to all these questions.

