Read Section 2.3 up through Exercise 2.3.6.

- (1) Do Exercise 2.3.5
- (2) Figure 1 shows a way of moving through the graph along a path.

FIGURE 1. The finite sequence $a, v_1, v_2, v_3, v_4, v_5, b$ is a path from a to b of length 6.

To specify our route, we can list all the vertices we pass through:

 $a, v_1, v_2, v_3, v_4, v_5, b$

The vertex v_3 is the same as the vertex v_5 , so there are vertices that appear more than once in the list.

Draw your own example of a fairly complicated graph and specify a path in it between two vertices.

(3) Here is the formal definition of a path in a graph:

Definition. Suppose that G = (V, E) is a graph. A **path** in *G* is a finite sequence

$$\alpha = v_0, v_1, \ldots, v_n$$

for some $n \in \mathbb{N}^*$ such that the following conditions hold:

- Each v_i (for $i \in \{0, ..., n\}$) is a vertex of *G*.
- For all $i \in \{0, ..., n-1\}$, the vertices v_i and v_{i+1} are the endpoints of an edge in *G*.

The number *n* is the **length** of α . If *e* is an edge of *G* such that there exists $i \in \{0, ..., n-1\}$ with the endpoints of *e* equal to v_i and v_{i+1} , then we say that *e* is **traversed** by α . If *a* and *b* are vertices of *G* such that $v_0 = a$ and $v_n = b$, we say that α is a path **from** *a* **to** *b*.

Explain how the formal definition applies to the example given above and to the example you created.

- (4) Suppose that *G* is a graph. For vertices *a* and *b* define the symbol $a \sim b$ to mean that there is a path from *a* to *b*. Explain why the following are true:
 - (a) For every vertex *a*, we have $a \sim a$. (Hint: A single vertex can consist of a path.)
 - (b) For every pair of vertices, if *a* ~ *b* then also *b* ~ *a*. (Hint: Assume that there is a path from *a* to *b*, explain why there must be a path from *b* to *a*.)
 - (c) For every three vertices *a*, *b*, and *c*, if $a \sim b$ and $b \sim c$, then $a \sim c$.
- (5) Explain what it means if for every two vertices *a* and *b* in the graph *G* we have $a \sim b$.
- (6) Give an example of a graph such that there are vertices *a* and *b* such that $a \neq b$.

For your presentation, explain the definition of path in a graph and your answers to the last three problems.