Read Section 2.3 up through Exercise 2.3.6.
(1) Do Exercise 2.3.5
(2) Figure 1 shows a way of moving through the graph along a path.

Figure 1. The finite sequence $a, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, b$ is a path from a to b of length 6.
To specify our route, we can list all the vertices we pass through:

$$
a, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, b
$$

The vertex ν_{3} is the same as the vertex ν_{5}, so there are vertices that appear more than once in the list.

Draw your own example of a fairly complicated graph and specify a path in it between two vertices.
(3) Here is the formal definition of a path in a graph:

Definition. Suppose that $G=(V, E)$ is a graph. A path in G is a finite sequence

$$
\alpha=v_{0}, v_{1}, \ldots, v_{n}
$$

for some $n \in \mathbb{N}^{*}$ such that the following conditions hold:

- Each v_{i} (for $i \in\{0, \ldots, n\}$) is a vertex of G.
- For all $i \in\{0, \ldots, n-1\}$, the vertices ν_{i} and v_{i+1} are the endpoints of an edge in G.

The number n is the length of α. If e is an edge of G such that there exists $i \in\{0, \ldots, n-1\}$ with the endpoints of e equal to v_{i} and v_{i+1}, then we say that e is traversed by α. If a and b are vertices of G such that $v_{0}=a$ and $v_{n}=b$, we say that α is a path from a to b.

Explain how the formal definition applies to the example given above and to the example you created.
(4) A graph is connected if for every two vertices a and b, there is a path from a to b. For a connected graph G, and for vertices a and b define $d(a, b)$ to be the length of the shortest path from a to b. Prove the following:
(a) For every vertex $a, d(a, a)=0$. (Hint: A path can consist of a single vertex.)
(b) For all vertices a and b, we have $d(a, b)=d(b, a)$. (Hint: Suppose you have the shortest path from a to b. How can you get the shortest path from b to a ?)
(c) For all vertices a, b, c, we have $d(a, c) \leq d(a, b)+d(b, c)$. (Hint: Start with a shortest path α from a to b and a shortest path β from b to c. Explain how to construct some path from a to c whose length is $d(a, b)+d(b, c)$. Then explain why $d(a, c)$ is no more than that length.)
(5) Explain why a connected graph, together with the way of measuring distance d given in the previous problem, is a metric space.

For your presentation, explain the definition of path, the definition of length of a path and your answers to (4) and (5).

