Read Section 2.3 up through Exercise 2.3.6.
(1) Do Exercise 2.3.5
(2) What matters in a graph is what the connections are, not how we draw it. In the figure below are two pictures of a particular graph called the Petersen graph. Label the vertices in each diagram and explain how to match the vertices in the left diagram with the vertices in the right diagram so that two vertices on the left are joined by an edge if and only if the corresponding vertices on the right are joined by an edge.
(3) Consider the set $A=\{1,2,3,4,5\}$. Create a graph as follows. For each two element subset (for instance $\{1,4\}$) create a vertex. Join two vertices together by an edge if the associated subsets have no elements in common. Draw a picture of this graph. Label each vertex with the corresponding subset.
(4) Show that the graph in the previous problem is the same graph as the Petersen graph. You can do this by explaining how to match the vertices in your drawing with the vertices in one of the drawings above.
(5) Suppose that G_{1} and G_{2} are graphs. We say that G_{1} is isomorphic to G_{2} if there is a way of matching the vertices of G_{1} with the vertices of G_{2} so that every vertex of G_{1} is matched with a vertex of G_{2} and vice versa and two vertices of G_{1} are joined by an edge if and only if the corresponding vertices of G_{2} are joined by an edge.

Explain why each of the following is true, by using the definition of isomorphic.
(a) Every graph is isomorphic to itself.
(b) If G_{1} is isomorphic to G_{2}, then G_{2} is isomorphic to G_{1}.
(c) If G_{1} is isomorphic to G_{2} and if G_{2} is isomorphic to G_{3}, then G_{1} is isomorphic to G_{3}.

In your presentation, you'll say what a graph is, and present your answers to 3, 4, 5 .

