
S16 MA 274: Constructing sequences and subsequences

In this worksheet, you (and your group) will construct prove one of the most important theorems in all of
mathematics. Unfortunately, why it is so important is beyond the scope of this course, but hopefully you’ll
take an analysis, topology, or geometry class to find out!

We begin with some definitions:

Suppose that X is a set and that (xn) is a sequence in X . A subsequence of (xn) is a sequence (xnk) where
(nk) is a strictly increasing sequence in N (that is, nk < nk+1 for all k).

If X =R, the sequence (xn) is increasing if xn ≤ xn+1 for all n∈N and decreasing if xn ≥ xn+1 for all n∈N.
If the inequalities are strict, then we say (xn) is strictly increasing or strictly decreasing respectively. If
(xn) is increasing or decreasing, we say it is monotonic.

If A⊂R, then an upper bound for A is any x ∈R∪{−∞,∞} such that a≤ x for all a ∈ A. The least upper
bound or supremum of A is an upper bound supA such that whenever x is an upper bound for A, supA≤ x.
A lower bound for A is any x ∈ R∪{−∞,∞} such that x ≤ a for all a ∈ A. The greatest lower bound or
infimum of A is a lower bound infA such that whenever x is a lower bound for A, x≤ infA. It is a theorem
(which you may use) that every set A⊂ R has an infimum and a supremum (which may be ±∞.)

A sequence (xn) in R converges to L ∈ R if for every ε > 0, there exists N ∈ N such that for all n≥ N,

L− ε < xn < L+ ε.

Prove the following, by filling in the missing steps.

Theorem 0.1. Suppose that A ⊂ R and that supA 6= ±∞ (i.e. supA ∈ R). Then A contains an increasing
sequence converging to supA. If supA /∈ A, then there is such a sequence which is strictly increasing.

Proof. We begin by defining the sequence and then we show it converges to supA. Since supA 6= ±∞, the
set A is non-empty. Since supA is the least upper bound for A, the number supA− 1 is not the least upper
bound for A. That is, there exists a1 ∈ A such that

supA−1 < a1 ≤ supA.

Assume that we have defined
a1,a2, . . . ,ak

so that for each j ∈ {1, . . . ,k}
supA− 1

j
< a j ≤ supA.

〈Explain how to define ak+1 〉.

Thus, by induction we have a sequence (an) so that for all n ∈ N,

supA− 1
n
< an ≤ supA.

〈Explain why (an) is increasing. 〉.

〈Explain how to change the proof to guarantee that if supA /∈A, then we can guarantee that (an) is strictly increasing. 〉.
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Now we show that (an) converges to supA. Let ε > 0. We must show that there is N ∈ N so that for all
n≥ N,

supA− ε < an < supA+ ε.

By basic properties of real numbers, there exists N ∈ N such that for all n≥ N, 1
n < ε . Then for all such n,

supA− ε < supA− 1
n
< an < supA < supA+ ε.

Thus, (an) converges to A. �

The next three theorems can be proved by a slight modification of the previous proof, although we give a
shorter proof of the first theorem.

Theorem 0.2. Suppose that A⊂R and that infA 6=±∞. Then A contains a decreasing sequence converging
to infA. If infA /∈ A, then there is such a sequence which is strictly decreasing.

Proof. Let −A = {−a ∈ R : a ∈ A}. Observe that infA =−sup(−A). Thus, by the previous theorem, there
is a increasing sequence (xn) in −A converging to sup(−A). If sup(−A) /∈ (−A), then the sequence may be
taken to be strictly increasing. Since for all n ∈ N, xn ∈ (−A), we have −xn ∈ A. The sequence (−xn) is
(strictly) decreasing if and only if (xn) is (strictly) increasing. For all ε > 0, there is an N ∈ N such that for
all n≥ N, we have:

sup(−A)− ε < xn < sup(−A)+ ε.

Multiplying by (−1) we obtain:
infA+ ε >−xn > infA− ε.

Thus (−xn) is a (strictly) decreasing sequence in A converging to infA. �

Theorem 0.3. Suppose that (xn) is a bounded sequence in R. If (xn) is increasing then it converges to
suprange(xn). If (xn) is decreasing then it converges to inf range(xn).

Proof. Suppose that (xn) is increasing. Let A = {x1,x2, . . .} be the range of the sequence (xn). We will show
that (xn) converges to supA. Let ε > 0 be given.

〈Explain why there is an N ∈ N s.t. supA− ε < xN ≤ supA〉.

〈Explain why for all n≥ N,supA− ε < xn ≤ supA〉.

The proof when (xn) is decreasing is similar. �

The next proof actually uses subsequences.

Theorem 0.4. Suppose that (xn) is a sequence in R. Then (xn) has a monotonic subsequence.

Proof. If (xn) has a strictly increasing subsequence, then we are done. Assume, therefore, that (xn) has no
strictly increasing subsequence. Let A1 = range(xn).

〈Explain whysupA1 ∈ A1.

Since supA1 ∈ A1, there exists n1 ∈ N, such that xn1 = supA1. Let A2 = {xn : n > n1}.

〈Explain why supA2 ∈ A2 and supA2 ≤ xn1〉
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Assume that we have defined n1 < n2 < · · ·< nk and A1,A2, . . . ,Ak so that for all j ∈ {1, . . . ,k}:

(i) A j = {xn : n > n j−1}
(ii) xn j = supA j

〈Define Ak+1 and nk+1〉

By induction we have a sequence (nk) of N.

〈Explain why (nk) is increasing. 〉

Thus (xnk) is a subsequence of (xn).

〈Explain why (xnk) is decreasing. 〉

Thus, (xn) has a monotonic subsequence. �
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