
S16 MA 274: Group Project 3

You will work in teams of 2 or 3 to complete this project. Each person in the group must turn in (on Monday
April 4) the following typed in LATEX. You may hand-draw any pictures that you need. The proofs must
be found through group discussion, but the write-ups should be done independently. You should not consult
any sources other than your course notes or texts.

(1) Statement and proofs of the statements below. See group project 2 (on the reverse side) for defini-
tions.

(2) A paragraph naming each person in the team, and summarizing the process by which the team came
to find the proofs. You should address such questions as: How difficult was it to figure out what
to prove? Did the team talk through everything together or did they work independently and then
compare solutions? Did one person (who?) take the lead or provide all the ideas? Did you feel
comfortable questioning your teammates solutions? why or why not? What did you contribute to
the process? You should also compare your work on this project to the work on group project 2 (on
which this one was based).

The Project:

(1) (This was a HW problem) Suppose that G is a connected graph and that v and w are distinct vertices
of G. Prove that there is a path from v to w with no backtracking.

(2) Prove that if G is a connected graph and if e is an edge of G that does not disconnect G, then G
contains a cycle v0, . . . ,vn with n≥ 1.

Hint: Let v− and v+ be the endpoints of e. Choose a path in G−e from v− to v+ without backtracking
(using the previous part). Put in the edge e to create a cycle in G. (Be sure to be precise about the
details.)

(3) Explain why the previous part shows that if G is a connected graph without without cycles of positive
length, then every edge of G separates G.

(4) Suppose that e is an edge of a connected graph. Let G− e be the result of removing e from G. Let
v− and v+ be the endpoints of e. Prove that for any vertex w of G− e there is a path in G− e from
w to either v− or v+.

(5) Use the previous part to prove that if e is an edge of a connected graph G, then G−e is connected if
and only if there is a path in G− e between the endpoints of e.

(6) Let G be a graph with a cycle v0, . . . ,vn with n ≥ 1. Prove that G contains a cycle w0, . . . ,wk with
k ≥ 1 such that if wi = w j then {i, j} ∈ {0,k}. (No vertex repetitions)

Hint: Use the Well-Ordering principle: Suppose that v0, . . . ,vn is some cycle in G. Let

S = {m ∈ N : ∃i ∈ {0, . . . ,n−1}s. t. vi = vi+m}

Explain why S 6= ∅. Choose k to be the least element of S and let i ∈ {0, . . . ,n− 1} be the cor-
responding index such that vi = vi+k. Define w j = v j+i and explain why w0,w1, . . . ,wk is a cycle
without vertex repetitions.

(7) Suppose that G is a connected graph containing a cycle of positive length. Prove that G has an edge
e such that G− e is connected.
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Hint: Use the previous result to conclude that G has a cycle of positive length without vertex repe-
titions. Let e be any edge of that cycle. Prove G− e is connected by showing that there is a path in
G− e between the endpoints of e.

(8) Explain why the previous part shows that if G is a connected graph such that every edge of G
separates G then G has no cycle of positive length.

Group Project 2 (for reference)

The word “graph” in mathematics has several meanings. One of the meanings is that a graph G consists of
a set of vertices (or nodes) and a set of edges (or connections). We’ll call the set of vertices V (G) and the
set of edges E(G). If v,w ∈V (G) are distinct then the set {v,w} is called the edge between v and w. Every
element of E(G) is a set of the form {v,w} where v and w are distinct elements of V (G).

If e = {v,w} ∈ E(G), we can form a new graph denoted G− e by letting V (G− e) =V (G) and E(G− e) =
{ f ∈ E(G) : f 6= e}. The graph G− e is said to be obtained by removing the edge e from E(G).

A path in a graph G is a list of vertices
v0,v1,v2, . . . ,vn

(for some n ∈ N∪{0}) such that for each i ∈ {0, . . . ,n− 1}, the set {vi,vi+1} ∈ E(G). (That is, adjacent
vertices in the path are endpoints of an edge in G.) We say that the path is from v0 to vn. The path is a cycle
if v0 = vn and if for all i ∈ {1, . . . ,n−1}, vi−1 6= vi+1 (i.e. no “back-tracking”).

A graph is connected if whenever v,w ∈ V (G), there exists a path from v to w. If G is connected and if
e ∈ E(G) but G− e is disconnected, then we say that e disconnects G.

Theorem. Suppose that G is a connected graph. Then every edge of G disconnects G if and only if G does
not have a cycle.

Group Assignments for Group Project 3

Mirco Dinelli, Abby Johnson, Luc Marrie

Sarah Whitey, Katie Discipio

Zhuofan Zhang, Stacey Hou, Makoto Ki-
noshita

Katherine Zafirson, Eric Hartman, Hanjing
Shi

Hannah Bossi, Pearson Treanor, John Baron

Keith Barnatchez, Joshua Young, Zitong
Wang

Jason Beland, Grace Farnkoff, Tomotaka
Cho

Robert Cambell, Xuning Wang

Chowdhury Farabee, Benard Kibet, Avery
Heilbron
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