
S15 MA 274: Exam 3 Study Questions

You can find solutions to some of these problems on the next page. These
questions only pertain to material covered since Exam 2. The final exam is
cumulative, so you should also study earlier material.

(1) Know the precise definitions of the terms requested for your journal.

(2) Be able to prove that a sequence (si) in a set X either has a constant
subsequence or has a subsequence of distinct terms.

(3) Know how to prove that if a set contains a surjective sequence which
has a subsequence of distinct terms, then the sequence has a subse-
quence which is both surjective and of distinct terms. Explain why
this shows that if there is a surjection N � X from N onto an infi-
nite set, then card(N) = card(X).

(4) Be able to prove that an infinite set contains a sequence of distinct
terms.

(5) Be able to prove that there is a bijection from an infinite set to a
proper subset.

(6) Be able to prove that N× N and Q are countable.

(7) Be able to prove that the countable union of countable sets is count-
able.

(8) Be able to prove that R is uncountable and (even more!) that it has
the same cardinality as P(X).

(9) Be able to prove that the set of irrational numbers is uncountable.

(10) Be able to prove that if X is a set then card(X) < card(P(X)).

(11) Be able to prove that the set of binary sequences has the same car-
dinality as P(N).

(12) Know how to prove that if X is a set, then the set of characteristic
functions (functions X → {0, 1}) on X has the same cardinality as
P(X).

(13) Be able to prove (using the axiom of choice) that if there is a surjec-
tion Y → X then card(X) ≤ card(Y )
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(14) Know how to prove that if X is a set with at least two distinct ele-
ments then the set of all sequences in X is uncountable.

(15) Be able to prove that the set of algebraic numbers is countable.

(16) (A new one!) Suppose that X is a countable set. Let C be the set of
sequences in X which are eventually constant. That is, there exists
a ∈ X such that for every (xn) ∈ C, there exists N ∈ N such that
for all n ≥ N , we have xn = a. Prove that C is countable.
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A couple solutions:

Theorem. Suppose that (si) is a surjective sequence in a setX and that (si)
has a subsequence of distinct terms. Then (si) has a subsequence of distinct
terms which is surjective.

Proof. We define the desired subsequence (sin) recursively. Let i1 = 1,
so that si1 = s1. Assume now that we have defined i1, . . . , in so that the
following hold:

(P(n) i1 < i2 < · · · < in
(Q(n) si1 , si2 , · · · , sin are all distinct

(R(n)) If j ≤ in, then there exists k ≤ n such that sj = sik

Condition P(n) guarantees that we are building a subsequence of (si). Con-
dition Q(n) will guarantee that we have a subsequence of distinct terms.
Condition R(n) will guarantee that our subsequence is surjective, as won’t
have skipped any terms of (si), which is a surjective sequence.

We now show how to define in+1 so that properties P(n+ 1), Q(n+ 1), and
R(n+ 1) still hold. Let

Sn = min(j : j > in and sj is distinct from each of si1 , . . . , sin).

The set Sn is non-empty since (si) contains a subsequence of distinct terms.
Thus, by the well-ordering principle, in+1 = minSn exists. Since in+1 ≥
in, property P(n+ 1) holds. Since sin+1 is distinct from each of si1 , . . . , sin ,
property Q(n+ 1) holds. We now show that R(n+ 1) holds.

Suppose that j ≤ in+1. If j ≤ in, then by R(n), there exists k ≤ n < n+ 1
so that sj = sik , as desired. Suppose, therefore, that in < j ≤ in+1. If
j 6∈ Sn, then by the definition of Sn, there exists one of k ≤ n < n+ 1 such
that sj = sik , as desired. If j ∈ Sn, then in+1 ≤ j, since in+1 is the minimal
element of Sn. Thus, in+1 = j and so sin+1 = sj , as desired. Consequently,
R(n+ 1) holds.

By induction we have a sequence (sin) such that for each n, P(n), Q(n), and
R(n) hold. In particular,

i1 < i2 < · · ·
which means that (sin) is, in fact, a subsequence of (si). If sin = sim then
either n ≤ m or m ≤ n. If n ≤ m, then by Q(m), we must have in = im.
Likewise, if m ≤ n, then by Q(n), we must have im = in. Consequently
(sin) is a subsequence of distinct terms.

Suppose that x ∈ X . Since the original sequence is surjective, there exists
j ∈ N such that sj = x. Choose n large enough so that j ≤ in. Then by
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R(n), there exists k such that sik = sj = x. Hence, (sin) is a surjective
subsequence of distinct terms in X . �

Since sequences are functions with domain N, this theorem implies that if
there is a surjective function N � X and if X is infinite then (by Theorem
7.2.5) there is a bijection (since subsequences of distinct terms are injective
functions and surjective subsequences are surjective functions) from N to
X .

Theorem. Suppose that Λ is a non-empty countable set and that for all
α ∈ Λ, the set Aα is countable and non-empty. We prove that

⋃
α∈ΛAα is

countable.

Proof. Since Λ is countable, there exists a surjection f : N→ Λ. Since, for
each α ∈ Λ, the set Aα is countable, there exists a surjection gα : N→ Aα.

Define h : N × N →
⋃
α∈ΛAα by h(i, j) = gf(i)(j). We claim that h is

a surjection. Suppose that a ∈
⋃
α∈ΛAα. Then there exists α ∈ Λ such

that a ∈ Aα. Since f is surjective, there exists i ∈ N such that f(i) = α.
Since gf(i) = gα is surjective, there exists j ∈ N such that gf(i)(j) = a.
Consequently, h(i, j) = a and so h is surjective.

Since N × N is countable, there exists a surjection k : N → N × N. Then
the function h ◦ k : N→

⋃
α∈ΛAα is a surjection since the composition of

surjections is surjective. Since there is a surjection from N to
⋃
α∈ΛAα, the

set
⋃
α∈Λ Aα is countable. �

Theorem. If there is a surjection Y → X then card(X) ≤ card(Y ).

Proof. Suppose that f : Y → X is a surjection. We will produce an in-
jection g : X → Y . The existence of such an injection guarantees that
card(X) ≤ card(Y ).

For each x ∈ X , let Ux = f−1(x). Since f is a surjection, each Ux is
nonempty. By the axiom of choice, we can choose a unique element yx
in each set Ux. Define g(x) = yx. Since yx was chosen uniquely, the
relation g is a function. Suppose that g(x1) = g(x2). Then yx1 = yx2 .
Hence yx2 ∈ Ux1 and yx1 ∈ Ux2 . But we chose a unique yx in each Ux,
so Ux1 = Ux2 . Since Ux1 = f−1(x1) and Ux2 = f−1(x2), and since f is a
function we must have x1 = x2. �

Theorem. Suppose that X is a set with at least two distinct elements. Then
the set of all sequences in X is uncountable.

Proof. Let S be the set of all sequences inX . We will show that there exists
a surjection f from S to the set of binary sequences. Since the set of binary
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sequences has the same cardinality as P(N), by the previous theorem, we
will have card(P(X)) ≤ card(S). Given that, suppose that S is countable.
Then

card(P(N)) ≤ card(S) ≤ card(N).

In which case card(P(N)) ≤ card(N), a contradiction. Thus, we will be
done if we can prove the existence of f .

Let x1 ∈ X . Define g : X → {0, 1} by

g(x) =
{

1 x = x1

0 x 6= x1.

Let B be the set of binary sequences. Recall that if s ∈ S , then s is a
function with domain N and codomain X . Define f : S → B by f(s) =
g ◦ s. That is, f(s) is the sequence that takes the value 1 whenever s hits x1

and takes the value 0 whenever s doesn’t hit x1.

We now show that f is a surjection. Let b : N → {0, 1} be a binary se-
quence. Since X has at least two elements, there exists x0 ∈ X\{x1}.
Define a sequence sb : N→ X as follows

sb(n) =
{
x0 b(n) = 0
x1 b(n) = 1

Notice that f(sb) = b, so f is surjective. �


