MA 274: Exam 2 Study Guide Partial Solutions

(1) Know the precise definitions of the terms requested for your journal.
(2) Review proofs by induction.

(3) Prove that it is impossible to write a computer program that can
determine if other computer programs contain an infinite loop. (i.e.
the halting problem)

Solution: Suppose (to obtain a contradiction) that P is such a pro-
gram and assume that P outputs “Stops” if the program inputted to
it does not contain an infinite loop and "Loops” if the program does
contain an infinite loop. Let () be the program that takes the same
input as P but enters into an infinite loop if P says the inputted
program stops and which stops if P says the software contains an
infinite loop. If we run @) on itself, then if P says () stops, () doesn’t
stop and if P says () loops, then () stops. Thus, P has ensnared us
in a logical contradiction and it cannot exist.

(4) Prove that A x B = {(a,b) : a € A,b € B} is a set (using the
axioms) if A is a set and if B is a set.

Solution: Recall that, by definition fora € Aand b € B,
(a,b) = {{a},{a,b}} € PP(AU B)
Thus,
Ax B={(a,b) e PP(AUB):a€ Aand b € B}

is a set by the Axiom of Specification.

(5) Be able to use the definition of 4 on the natural numbers to prove
basic facts about 4. (You will, however, not be asked to prove that
+ is commutative or associative.)

(6) Be able to prove that something is or isn’t an equivalence relation.
(7) Be able to prove that something is or isn’t a partial order.

(8) Understand what it means to prove that a function on equivalence

classes is well-defined.
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Hint: Given f: X/~ — Y (where ~ is an equivalence relation on
X) you need to assume that

[21] = [22]
and prove
f(la]) = f([2])
by using the fact that [z1] = [z5] if and only if x1 ~ z5.

(9) Be able to prove all or portions of the following facts. You should
also study other homework problems

(a) The intersection of inductive sets is inductive.

Solution: Suppose that A, is an inductive set for all o in some
index set A. Thus, @ € A, for all o and if U C A, (for
some «) then also S(U) C A,. We claim that () ., A, is
an inductive set. Since a € A, for all o, then @ € (), A,.
Suppose that U € [, Aa. Then U € A, for all a. Since each
A, is inductive, S(U) € A, for all a. Hence S(U) € [, Aas
as desired. Consequently the intersection of inductive sets is
inductive.

(b) There exists a unique smallest inductive set.

Solution: Let X be an inductive set and let /(X) be the set
of all inductive subsets of X. Since X is inductive, I(X) is
non-empty. By the previous problem the intersection N(.X) =
() I(X) of all those inductive sets is inductive. We claim that
if Y is some other inductive set, then N(X') = N(Y"), showing
that there is a unique smallest inductive set.

Observe that X NY is inductive and that /(X NY) C I(X),
since each inductive subset of X NY" is also an inductive subset
of X. Hence, N(X NY) C N(X). Since N(X NY) is an
inductive subset of X, N(X NY) € I(X). Hence it is one
of the sets in the intersection forming N(X'). Thus, N(X) C
N(X NY). Thus, N(X) = N(X NY). Reversing the roles of
X and Y in the preceding argument we see that also N(Y) =
N(X NY). Hence, N(X) = N(Y) as desired.

(c) There does not exist a set of all sets.

Solution: If there were a set U of all sets, we could form the
set

S={AcU|A¢gA}
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by the axiom of specification. Then either S € Sor S & S.
If S € S, then by the criterion for membership in S, S € S, a
contradiction. On the other hand, if S' ¢ S, then S satisfies the
criterion and S € S, another contradiction. Hence, U cannot
exist.

d2+2=4

(e) Ifa,b,c € Ny, then b + a = ¢ + a implies b = c.
Solution: We prove this by induction on a.
Base Case: a = 0.

By the definitionof +,b+a =b+0=bandc+a =c+0+c.
Hence,ifb+a =c+ a,then b = c.

Inductive Step: Assume that for some fixed a, b + a = ¢ + a.
We will show thatif b+ (a + 1) = c+ (a+ 1) then b = c.

Suppose that b+ (a + 1) = ¢+ (a + 1). Since S(a) = a + 1,
by the definition of +, we have S(b+ a) = S(c+ a). By one
of Peano’s axioms, this implies b+ a = ¢+ a. By the inductive
hypotheses we get b = ¢, as desired.

(f) If X is a set, then the relation
(A<B)< (ACDB)

is a partial order on P(X).
(g) Prove that equivalence classes form a partition.

Solution: Suppose that X is a set with an equivalence relation
~. We will show that X/ ~ is a partition of X. We begin
by showing the covering property. Let x € X. Since ~ is
reflexive, x ~ x. By definition, x € [z]|. Hence, X/~ satisfies
the covering property.

We now show that X/~ satisfies the pairwise disjoint property.
Let [z],[y] € X/ ~. Suppose that [z] N [y] # @. Let z €
[z] N [y]. Then z € [z] and z € [y]. Since z € [z], we have
x ~ z. Similarly y ~ z. By symmetry and transitivity, z ~ .
I claim that this implies that [z] = [y].

Let € [z]. Then x ~ a. Since z ~ y, we have y ~
(symmetry) and so y ~ a (transitivity). Hence, a € [y] and so
[z] C [y]. Similarly, if b € [y], then y ~ b. Since z ~ y, by
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transitivity, we have x ~ b and so b € [z]. Hence, [y] C [z].
Consequently, [z] = [y].

Since we have shown that if [z] N [y] # @, then [z] = [y] we
have proven that X/~ satisfies the pairwise disjoint property
and so is a partition. U

(h) Prove that if ~ is an equivalence relation on X then z ~ y if
and only if [z] = [y].

Solution: Assume, first, that z ~ y. Thus, y € [z]. Since ~
is reflexive, y € [y]. Hence, [z] N [y] # @. By the previous
problem, [z] = [y].

Now assume that [x] = [y]|. By the reflexive property, y € [y].
By the equality of sets, y € [z]. By definition of equivalence
class, z ~ y.

(i) If G'is a group and if H is a subgroup, then ~ is an equivalence
relation on G where

(x ~y) < Jh € Hsuchthatx =yoh

Solution: See the hand out on equivalence relation (or the
course notes, for slightly different version).

(j) Using the previous equivalence relation, for all x € G, prove
that there exists a bijection from [z] to H.

Solution: See the hand out on equivalence relation (or the
course notes, for slightly different version).

(k) If GG is a finite group and if H is a subgroup, then the number
of elements in G is a multiple of the the number of elements in
H.

Solution: See the hand out on equivalence relation.

(I) The compositions of injective (or surjective or bijective) func-
tions is injective (or surjective or bijective).

Solution: See the student solution from Monday, April 13.

(m) A function f: X — Y is a bijection if and only if it has an
inverse function f~': Y — X. (That is there is a function
1Y — X such that f~' o f(z) = z forall z € X and

fof Y y)=yforally e Y.)
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Solution: We haven’t yet discussed this problem, it won’t be
on the exam.

(10) Here are some new facts for you to try to prove:

(a) Suppose that f: X — Y is a function. If A C X, we define
f(A) ={y €Y :Ja € Af(a) = y}. Suppose that A, B are
subsets of X. Prove that f(AU B) = f(A) U f(B). Give an
example to show that f(A N B) need not be equal to f(A) N

f(B).
Solution: We show that f(AU B) C f(A) U f(B) and that
f(A)Uf(B) C f(AUB).

Assume thaty € f(AUB). By definition, thereisanx € AUB
such that f(z) = y. Since x € AU B, eitherz € Aorz € B.
Consequently, y = f(z) € f(A)ory = f(z) € f(B). Thus,
y e [(A)U[(B).

Conversely, assume that y € f(A) U f(B). Then, either y €
f(A) ory € f(B). In the former case, there exists x € A such
that f(x) = y and in the latter case, there exists = € B such
that f(z) = y. If there is x € A, then since A C AU B, we
alsohave x € AU Bandy € f(AU B). Similarly, if there is
x € B such that f(x) = y, then there exists z € AU B so that
y = f(x). Hence, in this case also, y € f(AU B).

Consequently, by our element arguments, f(AU B) = f(A) U
f(B).

For the remainder of the problem, let f: R — R be the func-
tion defined by f(x) = z? forallreal + € R. Let A C R
be the interval (—3,—1) and let B C R be the interval (1, 3).
Then AN B = @so f(AUB) = @, but f(A) = (1,9) and
f(B)=(1,9)so f(A) N f(B) is also the interval (1, 9).

(b) Let X = P(R) and define ~ on X by A ~ B if and only if
there exists a bijection f: A — B. Prove that ~ is an equiva-
lence relation.

Solution Sketch: The fact that ~ is reflexive follows from the
fact that the identity function is a bijection. Symmetry follows
from the fact that the inverse of a bijection is also a bijection
and transitivity follows from the fact that the composition of
bijections is a bijection.
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(c) Let (X, <) and (Y, <) be sets with partial orders. Define a
partial order < on X x Y by:

(a,b) < (¢,d) < (a<c)andifa =cthenb < d

Prove that < is a partial order and explain how it is related to
finding words in a dictionary.

(d) Prove using induction that the number of permutations of a set
of n elements is n!. (A permutation is a bijection from a set to
itself.)

Solution: Here is one possible solution. There are others (per-
haps they are easier?)

Suppose that X = &. Then the function @ C @ X @ = Jis the
unique function from & to itself. It is a bijection and so there
are 0! = 1 bijections of X to itself. Suppose now that if X is
any set with n elements then there are n! bijections from X to
itself. Let Y be any set with n + 1 elements. Choose y € Y
and let X =Y — {y}. Note that there are n elements of X and
so, by induction, there are n! permutations of X.

Now for each permutation f of Y, we can get a permutation
of X as follows: If f(y) = y, then the restriction of f to X
is a permutation of X. If f(y) # y, then there exists x € X
such that f(y) = z (since Y has one more element than X).
Let g: Y — Y switch x and y and be the identity on all other
elements. Then the restriction of g o f to X is a permutation of
X. Thus, there are at most n + 1 possibilities for f(y). Hence,
the number of permutations of Y is at most (n + 1) times the
number of permutations of X, namely (n+ 1) - n! = (n+ 1)L

On the other hand, given a permutation g of X, we can create a
permutation of Y by composing ¢ with the function g as above.
There are n + 1 choices for g and so we can create (n + 1)!
permutations of Y. So there are at least (n + 1)! permutations
of Y. Consequently, Y has exactly (n + 1)! permutations.

(e) Suppose that f: X — X is a bijection on a set with n el-
ements. Prove that there exist transpositions fi,..., fr of X
such that f = fr o fr_1 0 ... fy 0 fi. (A transposition is a
bijection that simply swaps two elements and leaves all other
elements unchanged.) Hint: Induct on n.

Hint: In the inductive step, let Y be the set with n+ 1 elements
and choose y € Y. Consider f(y). If f(y) = vy, f can be
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written as the composition of transpositions in the inductive
hypothesis. If f(y) # y we can apply a transposition g so that
go f(y) = y. Applying the inductive hypothesis, g o f is the
composition of transpositions. The inverse of g is g itself, and
so f is also the composition of transpositions.

(f) Give an example of a permutation of N which is not the com-
position of a finite number of transpositions.

Solution: There are many possibilities. One is the permutation
which switches 2n — 1 and 2n for all n € N.



