
MA 274: Exam 2 Study Guide Partial Solutions

(1) Know the precise definitions of the terms requested for your journal.

(2) Review proofs by induction.

(3) Prove that it is impossible to write a computer program that can
determine if other computer programs contain an infinite loop. (i.e.
the halting problem)

Solution: Suppose (to obtain a contradiction) that P is such a pro-
gram and assume that P outputs “Stops” if the program inputted to
it does not contain an infinite loop and ”Loops” if the program does
contain an infinite loop. Let Q be the program that takes the same
input as P but enters into an infinite loop if P says the inputted
program stops and which stops if P says the software contains an
infinite loop. If we runQ on itself, then if P saysQ stops,Q doesn’t
stop and if P says Q loops, then Q stops. Thus, P has ensnared us
in a logical contradiction and it cannot exist.

(4) Prove that A × B = {(a, b) : a ∈ A, b ∈ B} is a set (using the
axioms) if A is a set and if B is a set.

Solution: Recall that, by definition for a ∈ A and b ∈ B,

(a, b) = {{a}, {a, b}} ∈ PP(A ∪B)

Thus,

A×B = {(a, b) ∈ PP(A ∪B) : a ∈ A and b ∈ B}

is a set by the Axiom of Specification.

(5) Be able to use the definition of + on the natural numbers to prove
basic facts about +. (You will, however, not be asked to prove that
+ is commutative or associative.)

(6) Be able to prove that something is or isn’t an equivalence relation.

(7) Be able to prove that something is or isn’t a partial order.

(8) Understand what it means to prove that a function on equivalence
classes is well-defined.
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Hint: Given f : X/∼→ Y (where ∼ is an equivalence relation on
X) you need to assume that

[x1] = [x2]

and prove
f([x1]) = f([x2])

by using the fact that [x1] = [x2] if and only if x1 ∼ x2.

(9) Be able to prove all or portions of the following facts. You should
also study other homework problems

(a) The intersection of inductive sets is inductive.

Solution: Suppose that Aα is an inductive set for all α in some
index set Λ. Thus, ∅ ∈ Aα for all α and if U ⊂ Aα (for
some α) then also S(U) ⊂ Aα. We claim that

⋂
α∈ΛAα is

an inductive set. Since α ∈ Aα for all α, then ∅ ∈
⋂
αAα.

Suppose that U ∈
⋂
αAα. Then U ∈ Aα for all α. Since each

Aα is inductive, S(U) ∈ Aα for all α. Hence S(U) ∈
⋂
αAα,

as desired. Consequently the intersection of inductive sets is
inductive.

(b) There exists a unique smallest inductive set.

Solution: Let X be an inductive set and let I(X) be the set
of all inductive subsets of X . Since X is inductive, I(X) is
non-empty. By the previous problem the intersection N(X) =⋂
I(X) of all those inductive sets is inductive. We claim that

if Y is some other inductive set, then N(X) = N(Y ), showing
that there is a unique smallest inductive set.

Observe that X ∩ Y is inductive and that I(X ∩ Y ) ⊂ I(X),
since each inductive subset ofX∩Y is also an inductive subset
of X . Hence, N(X ∩ Y ) ⊂ N(X). Since N(X ∩ Y ) is an
inductive subset of X , N(X ∩ Y ) ∈ I(X). Hence it is one
of the sets in the intersection forming N(X). Thus, N(X) ⊂
N(X ∩ Y ). Thus, N(X) = N(X ∩ Y ). Reversing the roles of
X and Y in the preceding argument we see that also N(Y ) =
N(X ∩ Y ). Hence, N(X) = N(Y ) as desired.

(c) There does not exist a set of all sets.

Solution: If there were a set U of all sets, we could form the
set

S = {A ∈ U |A 6∈ A}
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by the axiom of specification. Then either S ∈ S or S 6∈ S.
If S ∈ S, then by the criterion for membership in S, S 6∈ S, a
contradiction. On the other hand, if S 6∈ S, then S satisfies the
criterion and S ∈ S, another contradiction. Hence, U cannot
exist.

(d) 2 + 2 = 4

(e) If a, b, c ∈ N0, then b+ a = c+ a implies b = c.

Solution: We prove this by induction on a.

Base Case: a = 0.

By the definition of +, b+a = b+ 0 = b and c+a = c+ 0 + c.
Hence, if b+ a = c+ a, then b = c.

Inductive Step: Assume that for some fixed a, b + a = c + a.
We will show that if b+ (a+ 1) = c+ (a+ 1) then b = c.

Suppose that b + (a + 1) = c + (a + 1). Since S(a) = a + 1,
by the definition of +, we have S(b + a) = S(c + a). By one
of Peano’s axioms, this implies b+ a = c+ a. By the inductive
hypotheses we get b = c, as desired.

(f) If X is a set, then the relation

(A ≤ B)⇔ (A ⊂ B)

is a partial order on P(X).

(g) Prove that equivalence classes form a partition.

Solution: Suppose that X is a set with an equivalence relation
∼. We will show that X/∼ is a partition of X . We begin
by showing the covering property. Let x ∈ X . Since ∼ is
reflexive, x ∼ x. By definition, x ∈ [x]. Hence, X/∼ satisfies
the covering property.

We now show thatX/∼ satisfies the pairwise disjoint property.
Let [x], [y] ∈ X/∼ . Suppose that [x] ∩ [y] 6= ∅. Let z ∈
[x] ∩ [y]. Then z ∈ [x] and z ∈ [y]. Since z ∈ [x], we have
x ∼ z. Similarly y ∼ z. By symmetry and transitivity, x ∼ y.
I claim that this implies that [x] = [y].

Let a ∈ [x]. Then x ∼ a. Since x ∼ y, we have y ∼ x
(symmetry) and so y ∼ a (transitivity). Hence, a ∈ [y] and so
[x] ⊂ [y]. Similarly, if b ∈ [y], then y ∼ b. Since x ∼ y, by
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transitivity, we have x ∼ b and so b ∈ [x]. Hence, [y] ⊂ [x].
Consequently, [x] = [y].

Since we have shown that if [x] ∩ [y] 6= ∅, then [x] = [y] we
have proven that X/∼ satisfies the pairwise disjoint property
and so is a partition. �

(h) Prove that if ∼ is an equivalence relation on X then x ∼ y if
and only if [x] = [y].

Solution: Assume, first, that x ∼ y. Thus, y ∈ [x]. Since ∼
is reflexive, y ∈ [y]. Hence, [x] ∩ [y] 6= ∅. By the previous
problem, [x] = [y].

Now assume that [x] = [y]. By the reflexive property, y ∈ [y].
By the equality of sets, y ∈ [x]. By definition of equivalence
class, x ∼ y.

(i) IfG is a group and ifH is a subgroup, then∼ is an equivalence
relation on G where

(x ∼ y)⇔ ∃h ∈ H such that x = y ◦ h

Solution: See the hand out on equivalence relation (or the
course notes, for slightly different version).

(j) Using the previous equivalence relation, for all x ∈ G, prove
that there exists a bijection from [x] to H .

Solution: See the hand out on equivalence relation (or the
course notes, for slightly different version).

(k) If G is a finite group and if H is a subgroup, then the number
of elements in G is a multiple of the the number of elements in
H .

Solution: See the hand out on equivalence relation.

(l) The compositions of injective (or surjective or bijective) func-
tions is injective (or surjective or bijective).

Solution: See the student solution from Monday, April 13.

(m) A function f : X → Y is a bijection if and only if it has an
inverse function f−1 : Y → X . (That is there is a function
f−1 : Y → X such that f−1 ◦ f(x) = x for all x ∈ X and
f ◦ f−1(y) = y for all y ∈ Y .)
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Solution: We haven’t yet discussed this problem, it won’t be
on the exam.

(10) Here are some new facts for you to try to prove:

(a) Suppose that f : X → Y is a function. If A ⊂ X , we define
f(A) = {y ∈ Y : ∃a ∈ Af(a) = y}. Suppose that A,B are
subsets of X . Prove that f(A ∪ B) = f(A) ∪ f(B). Give an
example to show that f(A ∩ B) need not be equal to f(A) ∩
f(B).

Solution: We show that f(A ∪ B) ⊂ f(A) ∪ f(B) and that
f(A) ∪ f(B) ⊂ f(A ∪B).

Assume that y ∈ f(A∪B). By definition, there is an x ∈ A∪B
such that f(x) = y. Since x ∈ A ∪ B, either x ∈ A or x ∈ B.
Consequently, y = f(x) ∈ f(A) or y = f(x) ∈ f(B). Thus,
y ∈ f(A) ∪ f(B).

Conversely, assume that y ∈ f(A) ∪ f(B). Then, either y ∈
f(A) or y ∈ f(B). In the former case, there exists x ∈ A such
that f(x) = y and in the latter case, there exists x ∈ B such
that f(x) = y. If there is x ∈ A, then since A ⊂ A ∪ B, we
also have x ∈ A ∪ B and y ∈ f(A ∪ B). Similarly, if there is
x ∈ B such that f(x) = y, then there exists x ∈ A ∪ B so that
y = f(x). Hence, in this case also, y ∈ f(A ∪B).

Consequently, by our element arguments, f(A ∪B) = f(A) ∪
f(B).

For the remainder of the problem, let f : R → R be the func-
tion defined by f(x) = x2 for all real x ∈ R. Let A ⊂ R
be the interval (−3,−1) and let B ⊂ R be the interval (1, 3).
Then A ∩ B = ∅ so f(A ∪ B) = ∅, but f(A) = (1, 9) and
f(B) = (1, 9) so f(A) ∩ f(B) is also the interval (1, 9).

(b) Let X = P(R) and define ∼ on X by A ∼ B if and only if
there exists a bijection f : A → B. Prove that ∼ is an equiva-
lence relation.

Solution Sketch: The fact that ∼ is reflexive follows from the
fact that the identity function is a bijection. Symmetry follows
from the fact that the inverse of a bijection is also a bijection
and transitivity follows from the fact that the composition of
bijections is a bijection.
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(c) Let (X,≤) and (Y,≺) be sets with partial orders. Define a
partial order� on X × Y by:

(a, b)� (c, d)⇔ (a ≤ c) and if a = c then b ≺ d

Prove that� is a partial order and explain how it is related to
finding words in a dictionary.

(d) Prove using induction that the number of permutations of a set
of n elements is n!. (A permutation is a bijection from a set to
itself.)

Solution: Here is one possible solution. There are others (per-
haps they are easier?)

Suppose thatX = ∅. Then the function ∅ ⊂ ∅×∅ = ∅ is the
unique function from ∅ to itself. It is a bijection and so there
are 0! = 1 bijections of X to itself. Suppose now that if X is
any set with n elements then there are n! bijections from X to
itself. Let Y be any set with n + 1 elements. Choose y ∈ Y
and let X = Y −{y}. Note that there are n elements of X and
so, by induction, there are n! permutations of X .

Now for each permutation f of Y , we can get a permutation
of X as follows: If f(y) = y, then the restriction of f to X
is a permutation of X . If f(y) 6= y, then there exists x ∈ X
such that f(y) = x (since Y has one more element than X).
Let g : Y → Y switch x and y and be the identity on all other
elements. Then the restriction of g ◦ f to X is a permutation of
X . Thus, there are at most n+ 1 possibilities for f(y). Hence,
the number of permutations of Y is at most (n + 1) times the
number of permutations of X , namely (n+ 1) · n! = (n+ 1)!.

On the other hand, given a permutation q of X , we can create a
permutation of Y by composing q with the function g as above.
There are n + 1 choices for g and so we can create (n + 1)!
permutations of Y . So there are at least (n + 1)! permutations
of Y . Consequently, Y has exactly (n+ 1)! permutations.

(e) Suppose that f : X → X is a bijection on a set with n el-
ements. Prove that there exist transpositions f1, . . . , fk of X
such that f = fk ◦ fk−1 ◦ . . . f2 ◦ f1. (A transposition is a
bijection that simply swaps two elements and leaves all other
elements unchanged.) Hint: Induct on n.

Hint: In the inductive step, let Y be the set with n+1 elements
and choose y ∈ Y . Consider f(y). If f(y) = y, f can be
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written as the composition of transpositions in the inductive
hypothesis. If f(y) 6= y we can apply a transposition g so that
g ◦ f(y) = y. Applying the inductive hypothesis, g ◦ f is the
composition of transpositions. The inverse of g is g itself, and
so f is also the composition of transpositions.

(f) Give an example of a permutation of N which is not the com-
position of a finite number of transpositions.

Solution: There are many possibilities. One is the permutation
which switches 2n− 1 and 2n for all n ∈ N.


