MA 274: Exam 2 Study Guide Partial Solutions

(1) Know the precise definitions of the terms requested for your journal.
(2) Review proofs by induction.
(3) Prove that it is impossible to write a computer program that can determine if other computer programs contain an infinite loop. (i.e. the halting problem)

Solution: Suppose (to obtain a contradiction) that P is such a program and assume that P outputs "Stops" if the program inputted to it does not contain an infinite loop and "Loops" if the program does contain an infinite loop. Let Q be the program that takes the same input as P but enters into an infinite loop if P says the inputted program stops and which stops if P says the software contains an infinite loop. If we run Q on itself, then if P says Q stops, Q doesn't stop and if P says Q loops, then Q stops. Thus, P has ensnared us in a logical contradiction and it cannot exist.
(4) Prove that $A \times B=\{(a, b): a \in A, b \in B\}$ is a set (using the axioms) if A is a set and if B is a set.

Solution: Recall that, by definition for $a \in A$ and $b \in B$,

$$
(a, b)=\{\{a\},\{a, b\}\} \in \mathcal{P} \mathcal{P}(A \cup B)
$$

Thus,

$$
A \times B=\{(a, b) \in \mathcal{P P}(A \cup B): a \in A \text { and } b \in B\}
$$

is a set by the Axiom of Specification.
(5) Be able to use the definition of + on the natural numbers to prove basic facts about + . (You will, however, not be asked to prove that + is commutative or associative.)
(6) Be able to prove that something is or isn't an equivalence relation.
(7) Be able to prove that something is or isn't a partial order.
(8) Understand what it means to prove that a function on equivalence classes is well-defined.

Hint: Given $f: X / \sim \rightarrow Y$ (where \sim is an equivalence relation on X) you need to assume that

$$
\left[x_{1}\right]=\left[x_{2}\right]
$$

and prove

$$
f\left(\left[x_{1}\right]\right)=f\left(\left[x_{2}\right]\right)
$$

by using the fact that $\left[x_{1}\right]=\left[x_{2}\right]$ if and only if $x_{1} \sim x_{2}$.
(9) Be able to prove all or portions of the following facts. You should also study other homework problems
(a) The intersection of inductive sets is inductive.

Solution: Suppose that A_{α} is an inductive set for all α in some index set Λ. Thus, $\varnothing \in A_{\alpha}$ for all α and if $U \subset A_{\alpha}$ (for some α) then also $S(U) \subset A_{\alpha}$. We claim that $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is an inductive set. Since $\alpha \in A_{\alpha}$ for all α, then $\varnothing \in \bigcap_{\alpha} A_{\alpha}$. Suppose that $U \in \bigcap_{\alpha} A_{\alpha}$. Then $U \in A_{\alpha}$ for all α. Since each A_{α} is inductive, $S(U) \in A_{\alpha}$ for all α. Hence $S(U) \in \bigcap_{\alpha} A_{\alpha}$, as desired. Consequently the intersection of inductive sets is inductive.
(b) There exists a unique smallest inductive set.

Solution: Let X be an inductive set and let $I(X)$ be the set of all inductive subsets of X. Since X is inductive, $I(X)$ is non-empty. By the previous problem the intersection $\mathbb{N}(X)=$ $\bigcap I(X)$ of all those inductive sets is inductive. We claim that if Y is some other inductive set, then $\mathbb{N}(X)=\mathbb{N}(Y)$, showing that there is a unique smallest inductive set.

Observe that $X \cap Y$ is inductive and that $I(X \cap Y) \subset I(X)$, since each inductive subset of $X \cap Y$ is also an inductive subset of X. Hence, $\mathbb{N}(X \cap Y) \subset \mathbb{N}(X)$. Since $\mathbb{N}(X \cap Y)$ is an inductive subset of $X, \mathbb{N}(X \cap Y) \in I(X)$. Hence it is one of the sets in the intersection forming $\mathbb{N}(X)$. Thus, $\mathbb{N}(X) \subset$ $\mathbb{N}(X \cap Y)$. Thus, $\mathbb{N}(X)=\mathbb{N}(X \cap Y)$. Reversing the roles of X and Y in the preceding argument we see that also $\mathbb{N}(Y)=$ $\mathbb{N}(X \cap Y)$. Hence, $\mathbb{N}(X)=\mathbb{N}(Y)$ as desired.
(c) There does not exist a set of all sets.

Solution: If there were a set U of all sets, we could form the set

$$
S=\{A \in U \mid A \notin A\}
$$

by the axiom of specification. Then either $S \in S$ or $S \notin S$. If $S \in S$, then by the criterion for membership in $S, S \notin S$, a contradiction. On the other hand, if $S \notin S$, then S satisfies the criterion and $S \in S$, another contradiction. Hence, U cannot exist.
(d) $2+2=4$
(e) If $a, b, c \in \mathbb{N}_{0}$, then $b+a=c+a$ implies $b=c$.

Solution: We prove this by induction on a.
Base Case: $a=0$.
By the definition of,$+ b+a=b+0=b$ and $c+a=c+0+c$. Hence, if $b+a=c+a$, then $b=c$.

Inductive Step: Assume that for some fixed $a, b+a=c+a$. We will show that if $b+(a+1)=c+(a+1)$ then $b=c$.

Suppose that $b+(a+1)=c+(a+1)$. Since $S(a)=a+1$, by the definition of + , we have $S(b+a)=S(c+a)$. By one of Peano's axioms, this implies $b+a=c+a$. By the inductive hypotheses we get $b=c$, as desired.
(f) If X is a set, then the relation

$$
(A \leq B) \Leftrightarrow(A \subset B)
$$

is a partial order on $\mathcal{P}(X)$.
(g) Prove that equivalence classes form a partition.

Solution: Suppose that X is a set with an equivalence relation \sim. We will show that X / \sim is a partition of X. We begin by showing the covering property. Let $x \in X$. Since \sim is reflexive, $x \sim x$. By definition, $x \in[x]$. Hence, X / \sim satisfies the covering property.
We now show that X / \sim satisfies the pairwise disjoint property. Let $[x],[y] \in X / \sim$. Suppose that $[x] \cap[y] \neq \varnothing$. Let $z \in$ $[x] \cap[y]$. Then $z \in[x]$ and $z \in[y]$. Since $z \in[x]$, we have $x \sim z$. Similarly $y \sim z$. By symmetry and transitivity, $x \sim y$. I claim that this implies that $[x]=[y]$.
Let $a \in[x]$. Then $x \sim a$. Since $x \sim y$, we have $y \sim x$ (symmetry) and so $y \sim a$ (transitivity). Hence, $a \in[y]$ and so $[x] \subset[y]$. Similarly, if $b \in[y]$, then $y \sim b$. Since $x \sim y$, by
transitivity, we have $x \sim b$ and so $b \in[x]$. Hence, $[y] \subset[x]$. Consequently, $[x]=[y]$.

Since we have shown that if $[x] \cap[y] \neq \varnothing$, then $[x]=[y]$ we have proven that X / \sim satisfies the pairwise disjoint property and so is a partition.
(h) Prove that if \sim is an equivalence relation on X then $x \sim y$ if and only if $[x]=[y]$.

Solution: Assume, first, that $x \sim y$. Thus, $y \in[x]$. Since \sim is reflexive, $y \in[y]$. Hence, $[x] \cap[y] \neq \varnothing$. By the previous problem, $[x]=[y]$.

Now assume that $[x]=[y]$. By the reflexive property, $y \in[y]$. By the equality of sets, $y \in[x]$. By definition of equivalence class, $x \sim y$.
(i) If G is a group and if H is a subgroup, then \sim is an equivalence relation on G where

$$
(x \sim y) \Leftrightarrow \exists h \in H \text { such that } x=y \circ h
$$

Solution: See the hand out on equivalence relation (or the course notes, for slightly different version).
(j) Using the previous equivalence relation, for all $x \in G$, prove that there exists a bijection from $[x]$ to H.

Solution: See the hand out on equivalence relation (or the course notes, for slightly different version).
(k) If G is a finite group and if H is a subgroup, then the number of elements in G is a multiple of the the number of elements in H.

Solution: See the hand out on equivalence relation.
(l) The compositions of injective (or surjective or bijective) functions is injective (or surjective or bijective).

Solution: See the student solution from Monday, April 13.
(m) A function $f: X \rightarrow Y$ is a bijection if and only if it has an inverse function $f^{-1}: Y \rightarrow X$. (That is there is a function $f^{-1}: Y \rightarrow X$ such that $f^{-1} \circ f(x)=x$ for all $x \in X$ and $f \circ f^{-1}(y)=y$ for all $y \in Y$.)

Solution: We haven't yet discussed this problem, it won't be on the exam.
(10) Here are some new facts for you to try to prove:
(a) Suppose that $f: X \rightarrow Y$ is a function. If $A \subset X$, we define $f(A)=\{y \in Y: \exists a \in A f(a)=y\}$. Suppose that A, B are subsets of X. Prove that $f(A \cup B)=f(A) \cup f(B)$. Give an example to show that $f(A \cap B)$ need not be equal to $f(A) \cap$ $f(B)$.
Solution: We show that $f(A \cup B) \subset f(A) \cup f(B)$ and that $f(A) \cup f(B) \subset f(A \cup B)$.
Assume that $y \in f(A \cup B)$. By definition, there is an $x \in A \cup B$ such that $f(x)=y$. Since $x \in A \cup B$, either $x \in A$ or $x \in B$. Consequently, $y=f(x) \in f(A)$ or $y=f(x) \in f(B)$. Thus, $y \in f(A) \cup f(B)$.

Conversely, assume that $y \in f(A) \cup f(B)$. Then, either $y \in$ $f(A)$ or $y \in f(B)$. In the former case, there exists $x \in A$ such that $f(x)=y$ and in the latter case, there exists $x \in B$ such that $f(x)=y$. If there is $x \in A$, then since $A \subset A \cup B$, we also have $x \in A \cup B$ and $y \in f(A \cup B)$. Similarly, if there is $x \in B$ such that $f(x)=y$, then there exists $x \in A \cup B$ so that $y=f(x)$. Hence, in this case also, $y \in f(A \cup B)$.

Consequently, by our element arguments, $f(A \cup B)=f(A) \cup$ $f(B)$.
For the remainder of the problem, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$ for all real $x \in \mathbb{R}$. Let $A \subset \mathbb{R}$ be the interval $(-3,-1)$ and let $B \subset \mathbb{R}$ be the interval $(1,3)$. Then $A \cap B=\varnothing$ so $f(A \cup B)=\varnothing$, but $f(A)=(1,9)$ and $f(B)=(1,9)$ so $f(A) \cap f(B)$ is also the interval $(1,9)$.
(b) Let $X=\mathcal{P}(\mathbb{R})$ and define \sim on X by $A \sim B$ if and only if there exists a bijection $f: A \rightarrow B$. Prove that \sim is an equivalence relation.

Solution Sketch: The fact that \sim is reflexive follows from the fact that the identity function is a bijection. Symmetry follows from the fact that the inverse of a bijection is also a bijection and transitivity follows from the fact that the composition of bijections is a bijection.
(c) Let (X, \leq) and (Y, \prec) be sets with partial orders. Define a partial order \ll on $X \times Y$ by:

$$
(a, b) \ll(c, d) \Leftrightarrow(a \leq c) \text { and if } a=c \text { then } b \prec d
$$

Prove that \ll is a partial order and explain how it is related to finding words in a dictionary.
(d) Prove using induction that the number of permutations of a set of n elements is $n!$. (A permutation is a bijection from a set to itself.)

Solution: Here is one possible solution. There are others (perhaps they are easier?)
Suppose that $X=\varnothing$. Then the function $\varnothing \subset \varnothing \times \varnothing=\varnothing$ is the unique function from \varnothing to itself. It is a bijection and so there are $0!=1$ bijections of X to itself. Suppose now that if X is any set with n elements then there are n ! bijections from X to itself. Let Y be any set with $n+1$ elements. Choose $y \in Y$ and let $X=Y-\{y\}$. Note that there are n elements of X and so, by induction, there are n ! permutations of X.

Now for each permutation f of Y, we can get a permutation of X as follows: If $f(y)=y$, then the restriction of f to X is a permutation of X. If $f(y) \neq y$, then there exists $x \in X$ such that $f(y)=x$ (since Y has one more element than X). Let $g: Y \rightarrow Y$ switch x and y and be the identity on all other elements. Then the restriction of $g \circ f$ to X is a permutation of X. Thus, there are at most $n+1$ possibilities for $f(y)$. Hence, the number of permutations of Y is at most $(n+1)$ times the number of permutations of X, namely $(n+1) \cdot n!=(n+1)!$.
On the other hand, given a permutation q of X, we can create a permutation of Y by composing q with the function g as above. There are $n+1$ choices for g and so we can create $(n+1)$! permutations of Y. So there are at least $(n+1)$! permutations of Y. Consequently, Y has exactly $(n+1)$! permutations.
(e) Suppose that $f: X \rightarrow X$ is a bijection on a set with n elements. Prove that there exist transpositions f_{1}, \ldots, f_{k} of X such that $f=f_{k} \circ f_{k-1} \circ \ldots f_{2} \circ f_{1}$. (A transposition is a bijection that simply swaps two elements and leaves all other elements unchanged.) Hint: Induct on n.

Hint: In the inductive step, let Y be the set with $n+1$ elements and choose $y \in Y$. Consider $f(y)$. If $f(y)=y, f$ can be
written as the composition of transpositions in the inductive hypothesis. If $f(y) \neq y$ we can apply a transposition g so that $g \circ f(y)=y$. Applying the inductive hypothesis, $g \circ f$ is the composition of transpositions. The inverse of g is g itself, and so f is also the composition of transpositions.
(f) Give an example of a permutation of \mathbb{N} which is not the composition of a finite number of transpositions.

Solution: There are many possibilities. One is the permutation which switches $2 n-1$ and $2 n$ for all $n \in \mathbb{N}$.

