MA 274: Exam 2 Study Guide

(1) Know the precise definitions of the terms requested for your journal.
(2) Review proofs by induction.
(3) Prove that it is impossible to write a computer program that can determine if other computer programs contain an infinite loop. (i.e. the halting problem)
(4) Prove that $A \times B=\{(a, b): a \in A, b \in B\}$ is a set (using the axioms) if A is a set and if B is a set.
(5) Be able to use the definition of + on the natural numbers to prove basic facts about + . (You will, however, not be asked to prove that + is commutative or associative.)
(6) Be able to prove that something is or isn't an equivalence relation.
(7) Be able to prove that something is or isn't a partial order.
(8) Understand what it means to prove that a function on equivalence classes is well-defined.
(9) Be able to prove all or portions of the following facts. You should also study other homework problems
(a) The intersection of inductive sets is inductive.
(b) There exists a unique smallest inductive set.
(c) There does not exist a set of all sets.
(d) $2+2=4$
(e) If $a, b, c \in \mathbb{N}_{0}$, then $b+a=c+a$ implies $b=c$.
(f) If X is a set, then the relation

$$
(A \leq B) \Leftrightarrow(A \subset B)
$$

is a partial order on $\mathcal{P}(X)$.
(g) Prove that equivalence classes form a partition.
(h) Prove that if \sim is an equivalence relation, then $x \sim y$ if and only if $[x]=[y]$.
(i) If G is a group and if H is a subgroup, then \sim is an equivalence relation on G where

$$
(x \sim y) \Leftrightarrow y^{-1} \circ x \in H
$$

(j) Using the previous equivalence relation, for all $x \in G$, prove that there exists a bijection from $[x]$ to H.
(k) State and prove LaGrange's Theorem.
(l) The compositions of injective (or surjective or bijective) functions is injective (or surjective or bijective).
(m) A function $f: X \rightarrow Y$ is a bijection if and only if it has an inverse function $f^{-1}: Y \rightarrow X$. (That is there is a function $f^{-1}: Y \rightarrow X$ such that $f^{-1} \circ f(x)=x$ for all $x \in X$ and $f \circ f^{-1}(y)=y$ for all $\left.y \in Y.\right)$
(10) Here are some new facts for you to try to prove:
(a) Suppose that $f: X \rightarrow Y$ is a function. If $A \subset X$, we define $f(A)=\{y \in Y: \exists a \in A f(a)=y\}$. Suppose that A, B are subsets of X. Prove that $f(A \cup B)=f(A) \cup f(B)$. Give an example to show that $f(A \cap B)$ need not be equal to $f(A) \cap$ $f(B)$.
(b) Let $X=\mathcal{P}(\mathbb{R})$ and define \sim on X by $A \sim B$ if and only if there exists a bijection $f: A \rightarrow B$. Prove that \sim is an equivalence relation.
(c) Let (X, \leq) and (Y, \prec) be sets with partial orders. Define a partial order \ll on $X \times Y$ by:

$$
(a, b) \ll(c, d) \Leftrightarrow(a \leq c) \text { and if } a=c \text { then } b \prec d
$$

Prove that \ll is a partial order and explain how it is related to finding words in a dictionary.
(d) Prove using induction that the number of permutations of a set of n elements is $n!$. (A permutation is a bijection from a set to itself.)
(e) Suppose that $f: X \rightarrow X$ is a bijection on a set with n elements. Prove that there exist transpositions f_{1}, \ldots, f_{k} of X such that $f=f_{k} \circ f_{k-1} \circ \ldots f_{2} \circ f_{1}$. (A transposition is a bijection that simply swaps two elements and leaves all other elements unchanged.) Hint: Induct on n.
(f) Give an example of a permutation of \mathbb{N} which is not the composition of a finite number of transpositions.

