MA 274: Well-Ordering Principle

Theorem (Well-Ordering Principle). If § C N is non-empty, then there is a
least element s € S. That is, there exists s € S such that forall x € S, s < x.

We apply this to prove the Chinese Remainder Theorem.

Theorem (Chinese Remainder Theorem). Let a,b € N. Then there exist
unique integers g and r such thata =bg+rand 0 < r < b.

Proof. We start by proving the existence of g and r. Let
S={re€Z:IkeNU{0}str =a—bk>0}.

Note that by the definition of S, we have S C NU{0}. In the definition, if
we choose k = 0, we would have ¥ =a € N. Thus,a € Sand S # &.

Case 1: 0 € S In this case, there exists g € N such that a = bg+ 0. Since
r =0 < b, we have the g and r we were looking for.

Case2: 0 ¢ S.

Since 0 ¢ S, we have S C N. Since S # &, by the well-ordering principle, S
has a least element r = a — bq for some g € NU{0}. Hence a = bg + r and
r > 0. To finish the existence portion of the theorem, we need only explain
why r < b. We do this by contradiction.

If » > b, then

b<r=a—bgq
Hence, 0 <a—b(q+1). Let ¥ =a—b(g+1). Since ' > 0, the number
r € S. Clearly, ¥ < r, since we are subtracting an additional copy of b €
N. But this contradicts the choice of r to be the least element of S. This
contradiction implies r < b.

Thus, there exists ¢, € NU{0} so that a = bg+r and 0 < r < b, as desired.
We now show that they are unique.

Suppose, now that there exist g1, g2, 71, 1 so that

a = bq1 +r1

a = bgy+nr
and 0 < r; < b and 0 < rp < b. Without loss of generality, assume that
|¥) 2 r. Then

bg\ +r1 = bgr +r>.
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So,
b(q1 —q2) =r2—11.
Hence, r, — r; is a multiple of b. However, r, —r; < rp < b. The only

non-negative integer strictly less than b that is a multiple of b is 0 and so
rp —r1 = 0. This implies that r, = r; and g = ¢q;. ]



