MA 274: Convex Sets

Definition. A subset $U \subset \mathbb{R}^2$ is **convex** if for all $P, Q \in U$ the line segment \overline{PQ} between *P* and *Q* is also a subset of *U*.

Theorem 0.1. Suppose that \mathscr{C} is a set whose elements are convex subsets of \mathbb{R}^2 . Then $\bigcap \mathscr{C}$ is convex.

Proof. Let $P, Q \in \bigcap \mathscr{C}$. We must show that the line segment \overline{PQ} is a subset of U. Since both $P, Q \in \bigcap \mathscr{C}$, by the definition of "intersection", for every convex set $C \in \mathscr{C}$, we have $P, Q \in C$. Since each $C \in \mathscr{C}$ is convex, by the definition of convex, the line segment $\overline{PQ} \subset C$. Let $x \in \overline{PQ}$. By the definition of subset, for every $C \in \mathscr{C}$, the point $x \in C$. Thus, by definition of intersection, $x \in \bigcap \mathscr{C}$. Since this is true for every $x \in \overline{PQ}$, we have $\overline{PQ} \subset \bigcap \mathscr{C}$, as desired. Thus, \mathscr{C} is convex.