MA 274: Circle Rotations

Let $S^{1}=\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\}$ be the unit circle in \mathbb{R}^{2} and let $T_{\theta}: S^{1} \rightarrow S^{1}$ be a rotation of the circle by θ radians counter-clockwise. Let $x_{0}=(1,0) \in S^{1}$. Observer that if $k \in \mathbb{Z}$ then $T^{k}: S^{1} \rightarrow S^{1}$ rotates the circle by an angle of $k \theta$. Observe that two angles θ and θ^{\prime} differ by an integer multiple of 2π, if and only if $T_{\theta}=T_{\theta^{\prime}}$.

Lemma 1. If θ is not a rational multiple of 2π, then for all $k \in \mathbb{Z} \backslash\{0\}$, $T_{\theta}^{k}\left(x_{0}\right) \neq x_{0}$.

Proof. Suppose, to the contrary, that there exists $k \in \mathbb{Z} \backslash\{0\}$, such that $T_{\theta}^{k}\left(x_{0}\right)=x_{0}$. Since a rotation that doesn't move one point doesn't move any point, the function $T_{\theta}^{k}: S^{1} \rightarrow S^{1}$ is the identity function. In other words, there is $m \in \mathbb{Z}$ such that $k \theta=2 \pi m$. Since $k \neq 0$ we have $\theta=\frac{m}{k}(2 \pi)$, contrary to our assumption on θ. Thus, for all $k \in \mathbb{Z} \backslash\{0\}, T_{\theta}^{k}\left(x_{0}\right) \neq x_{0}$.

Theorem 2. Suppose that θ is not a rational multiple of 2π. Then for every $\varepsilon>0$, there exists $k \in \mathbb{N}$ such that $T_{\theta}^{k}\left(x_{0}\right)$ is within a distance of ε from x_{0} on S^{1}.

Proof. We prove the following claim by induction on n :
Claim: For every $n \in \mathbb{N}$, there exists $k \in \mathbb{N}$ such that the distance from $T_{\theta}^{k}\left(x_{0}\right)$ to x_{0} on S^{1} is at most $|\theta| / 2^{n}$.
Base Case: $n=1$.
For each $k \in \mathbb{N}$, consider the open interval I_{k} on S^{1} between $T_{\theta}^{k}\left(x_{0}\right)$ and $T_{\theta}^{k+1}\left(x_{0}\right)$. This interval has length θ since T rotates S^{1} by an angle of θ and S^{1} is the unit circle. By the Lemma since x_{0} is never an endpoint of I_{k} for any k, there is a minimal m such that $x_{0} \in I_{k}$. We note that x_{0} is not the midpoint of the interval, for then $\theta / 2$ would be an integer multiple of 2π which contradicts the fact that θ is not a rational multiple of 2π. Thus, either $T_{\theta}^{m}\left(x_{0}\right)$ or $T_{\theta}^{m+1}\left(x_{0}\right)$ is within $\theta / 2$ of x_{0}. Thus for $k=m$ or $k=m+1$ we have our Base Case.

Inductive Step: Assume that for some $n \in \mathbb{N}$, there is $k \in \mathbb{N}$ such that $T_{\theta}^{k}\left(x_{0}\right)$ is within $\theta / 2^{n}$ of x_{0}. We will prove that there is a $p \in \mathbb{N}$ such that $T_{\theta}^{p}\left(x_{0}\right)$ is within $\theta / 2^{n+1}$ of x_{0}.

Let ψ be the angle (lying between $(-\pi, \pi)$ from x_{0} to $T_{\theta}^{k}\left(x_{0}\right)$ so that $|\psi|$ being the distance from x_{0} to $T_{\theta}^{k}\left(x_{0}\right)$ along S^{1} is strictly less than $\theta / 2^{n}$. Observe that $T_{\theta}^{k}=T_{k \theta}=T_{\psi}$ and that the number ψ is, therefore, not a rational multiple of 2π. Applying the Base Case to ψ in place of θ, we see that there exists $a \in \mathbb{N}$ such that the distance from $T_{\psi}^{a}\left(x_{0}\right)$ to x_{0} along S^{1} is strictly less than $\psi / 2=\theta / 2^{n+1}$. Since

$$
T_{\psi}^{a}\left(x_{0}\right)=\left(T_{\theta}^{k}\left(x_{0}\right)\right)^{a}=T_{\theta}^{a k}\left(x_{0}\right)
$$

is within $\theta / 2^{n+1}$ of x_{0}, letting $p=a k$ we have our result. This completes the proof of the Claim.
Since $\varepsilon>0$, there is an $n \in \mathbb{N}$ such that $|\theta| / 2^{n}<\varepsilon$. By the Claim, there exists $k \in \mathbb{N}$ such that $T_{\theta}^{k}\left(x_{0}\right)$ is within $|\theta| / 2^{n}$ (and thus within ε) of x_{0}, as desired.

We now show that we can approximate any point using the images of x_{0} under iterations of T_{θ}. The points of the sequence $\left(T_{\theta}^{k}\left(x_{0}\right)\right)$ are called iterates of x_{0} under T_{θ}.

Theorem 3. For every $x \in S^{1}$ and for every $\varepsilon>0$ there exists $k \in \mathbb{N}$ such that $T^{k}\left(x_{0}\right)$ is within ε of x.

Proof. By Theorem 2 there exists $m \in \mathbb{N}$ such that $T^{m}\left(x_{0}\right)$ is within ε of x_{0}. Let I be the closed interval on S^{1} between $T^{m}\left(x_{0}\right)$ and x_{0}. Applying T_{θ} to I enough times, covers all of S^{1} with copies of I. The endpoints of these copies of I are iterates under T_{θ} of x_{0}. The point x lies in (at least) one of these intervals and so there is an iterate of x_{0} under T_{θ} which is within ε of x.

Question: Is it possible that there is some θ so that every point of S^{1} is an iterate of x_{0} under T_{θ} ? What about being an iterate under either T_{θ} or $T_{\theta}^{-1}=T_{-\theta}$.
Finally, some terminology. We can define a sequence $\left(x_{n}\right)$ recursively by defining, for all $n \in \mathbb{N}, x_{n}=T_{\theta}\left(x_{0}\right)$ (recalling that $x_{0}=(1,0)$.) The sequence is an example of an iterated function sequence. If $X \subset S^{1}$ we say that X is dense in S^{1} if every open interval in S^{1} contains a point of X. Theorem ?? shows that if θ is irrational then the points of the iterated function sequence $\left(x_{n}\right)$ are dense in S^{1}.

