
MA 274: Circle Rotations

Let S1 = {x ∈R2 : ||x||= 1} be the unit circle in R2 and let Tθ : S1→ S1 be
a rotation of the circle by θ radians counter-clockwise. Let x0 = (1,0)∈ S1.
Observer that if k ∈ Z then T k : S1 → S1 rotates the circle by an angle of
kθ . Observe that two angles θ and θ ′ differ by an integer multiple of 2π , if
and only if Tθ = Tθ ′ .

Lemma 1. If θ is not a rational multiple of 2π , then for all k ∈ Z \ {0},
T k

θ
(x0) 6= x0.

Proof. Suppose, to the contrary, that there exists k ∈ Z \ {0}, such that
T k

θ
(x0) = x0. Since a rotation that doesn’t move one point doesn’t move any

point, the function T k
θ

: S1 → S1 is the identity function. In other words,
there is m ∈ Z such that kθ = 2πm. Since k 6= 0 we have θ = m

k (2π), con-
trary to our assumption on θ . Thus, for all k ∈ Z\{0}, T k

θ
(x0) 6= x0. �

Theorem 2. Suppose that θ is not a rational multiple of 2π . Then for every
ε > 0, there exists k ∈ N such that T k

θ
(x0) is within a distance of ε from x0

on S1.

Proof. We prove the following claim by induction on n:

Claim: For every n ∈ N, there exists k ∈ N such that the distance from
T k

θ
(x0) to x0 on S1 is at most |θ |/2n.

Base Case: n = 1.

For each k ∈ N, consider the open interval Ik on S1 between T k
θ
(x0) and

T k+1
θ

(x0). This interval has length θ since T rotates S1 by an angle of θ

and S1 is the unit circle. By the Lemma since x0 is never an endpoint of
Ik for any k, there is a minimal m such that x0 ∈ Ik. We note that x0 is not
the midpoint of the interval, for then θ/2 would be an integer multiple of
2π which contradicts the fact that θ is not a rational multiple of 2π . Thus,
either T m

θ
(x0) or T m+1

θ
(x0) is within θ/2 of x0. Thus for k = m or k = m+1

we have our Base Case.

Inductive Step: Assume that for some n∈N, there is k∈N such that T k
θ
(x0)

is within θ/2n of x0. We will prove that there is a p ∈N such that T p
θ
(x0) is

within θ/2n+1 of x0.
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Let ψ be the angle (lying between (−π,π) from x0 to T k
θ
(x0) so that |ψ|

being the distance from x0 to T k
θ
(x0) along S1 is strictly less than θ/2n.

Observe that T k
θ
= Tkθ = Tψ and that the number ψ is, therefore, not a

rational multiple of 2π . Applying the Base Case to ψ in place of θ , we see
that there exists a ∈ N such that the distance from T a

ψ(x0) to x0 along S1 is
strictly less than ψ/2 = θ/2n+1. Since

T a
ψ(x0) = (T k

θ (x0))
a = T ak

θ (x0)

is within θ/2n+1 of x0, letting p = ak we have our result. This completes
the proof of the Claim.

Since ε > 0, there is an n ∈ N such that |θ |/2n < ε . By the Claim, there
exists k ∈ N such that T k

θ
(x0) is within |θ |/2n (and thus within ε) of x0, as

desired. �

We now show that we can approximate any point using the images of x0 un-
der iterations of Tθ . The points of the sequence (T k

θ
(x0)) are called iterates

of x0 under Tθ .

Theorem 3. For every x ∈ S1 and for every ε > 0 there exists k ∈ N such
that T k(x0) is within ε of x.

Proof. By Theorem 2 there exists m ∈N such that T m(x0) is within ε of x0.
Let I be the closed interval on S1 between T m(x0) and x0. Applying Tθ to
I enough times, covers all of S1 with copies of I. The endpoints of these
copies of I are iterates under Tθ of x0. The point x lies in (at least) one of
these intervals and so there is an iterate of x0 under Tθ which is within ε of
x. �

Question: Is it possible that there is some θ so that every point of S1 is
an iterate of x0 under Tθ ? What about being an iterate under either Tθ or
T−1

θ
= T−θ ?

Finally, some terminology. We can define a sequence (xn) recursively by
defining, for all n∈N, xn = Tθ (x0) (recalling that x0 =(1,0).) The sequence
is an example of an iterated function sequence. If X ⊂ S1 we say that X is
dense in S1 if every open interval in S1 contains a point of X . Theorem ??
shows that if θ is irrational then the points of the iterated function sequence
(xn) are dense in S1.


