Exam 1 Study Guide

MA 111 Spring 2015

1. READING QUESTIONS

It is suggested you review the reading and the examples of different kinds of symmetries from the reading.

- (1) Be able to name all the types of symmetries of a given pattern, using proper terminology
- (2) Be able to recognize frieze patterns and wallpaper patterns
- (3) Be able to explain the different kinds of symmetries which may or may not be present in a musical canon.
- (4) Be able to draw shapes exhibiting certain kinds of symmetries.

2. Some math

- (1) Give an example of a planar shape with non-trivial rotational symmetry.
- (2) Give an example of a planar shape with non-trivial rotational symmetry, but no bilateral symmetry.
- (3) Define the following groups or terminology:

translation	reflection
glide reflection	
group	even permutation
D_n	subgroup
\mathbb{S}_n	cycle number
transposition	odd permutation
C_n	generators for a group
braid group	identity in a group
associative property	inverse of a symmetry
generators	\mathbb{A}_n
frieze pattern	wallpaper pattern

- (4) Is \mathbb{R} (the real numbers) with addition a group? Is \mathbb{R} with subtraction a group?
- (5) Carefully explain why D_n can be generated by a rotation and a reflection.
- (6) Carefully explain why D_n can be generated by two reflections.
- (7) Carefully explain why \mathbb{S}_n can be generated by transpositions.

- (8) Carefully explain why each symmetry in \mathbb{S}_n is either a combination of an even number of transpositions or an odd number of transpositions, but not both.
- (9) Carefully explain why the 14-15 puzzle cannot be solved.
- (10) Be able to determine if a given sliding block puzzle cannot be solved using the method from class.
- (11) Explain the relationship between plain bob minimus (which would be given to you, no need to memorize), the subgroup $\langle [12][34], [23] \rangle$ of \mathbb{S}_4 , and the cosets of that subgroup.
- (12) Find all symmetries in the subgroup $\langle [123] [45], [45] \rangle$ of \mathbb{S}_5 .
- (13) Show that R_{144} generates C_5
- (14) How many symmetries are in the subgroup $\langle [123] [45] \rangle$ of \mathbb{S}_5 ?
- (15) How many symmetries are in the subgroup $\langle [123] [45] \rangle$ of \mathbb{S}_5 ?
- (16) Suppose that *S* and *T* are two symmetries in a group. Show that $(T \circ S)^{-1} = S^{-1} \circ T^{-1}$.
- (17) Explain why D_n is a subgroup of \mathbb{S}_n for all n.
- (18) Given a subgroup of a group be able to find all the subgroups of that group.
- (19) Be able to use LaGrange's theorem to find the the number of cosets of a given group
- (20) Be able to explain how LaGrange's theorem give restrictions on the symmetry groups of decorated objects.
- (21) The subgroup D_8 has 8 rotations and 8 reflections. The rotations are

 $\mathbf{I}, R_{45}, R_{90}, R_{135}, R_{180}, R_{225}, R_{270}, R_{315}.$

The reflections are drawn below.

Perform the following computations

- (a) $R_{45} \circ a$
- (b) $a \circ R_{45}$
- (c) $R_{135} \circ g$
- (d) $R_{135} \circ g \circ R_{135}$
- (22) Perform the following computations in \mathbb{S}_5 :
 - (a) [123][254]
 - (b) [12] [23] [35] [54]
- (23) Let g = [123456][789] in S₉.
 - (a) Let t = [25]. Draw convincing pictures to show how the cycle number of $g \circ t$ differs from the cycle number of g.
 - (b) Let t = [48]. Draw convincing pictures to show how the cycle number of $g \circ t$ differs from the cycle number of g.
- (24) Determine whether the following symmetries are odd or even permutations.
 - (a) [246][13]
 - (b) [1234][567]
 - (c) [239][1485][10115]
 - (d) [2345][3456].
 - 3. COSETS AND LAGRANGE'S THEOREM
- (1) State LaGrange's Theorem and explain, in detail, why it is true.
- (2) Use LaGrange's theorem to show that if a group contains a prime number of symmetries then the only subgroups are $\{I\}$ and the whole group. Use this to show that any symmetry other than I will generate the group.
- (3) Consider the subgroup

of S_8 . Explain why this subgroup must contain at least 60 symmetries.

(4) Refer to the notation for symmetries in D_8 above. Let *H* be the subgroup $\{I, R_{90}, R_{180}, R_{270}\}$. Organize the symmetries in D_8 according to the cosets of *H* in D_8 .