
Trees, polygons, 
hyperbolic Geometry
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needed to convert between two binary 
trees of size n?
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Answer: d(n) ≤ 2n - 6 and equality holds if n large 
enough.
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Geometry

t(n+2) = min # of tetrahedra in a 
triangulation of a ball interpolating 
between two triangulations.

Define:

Then: t(n+2) ≤ d(n)
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Need To find: K(n+2) ≤ t(n+2) 



Geometry

Idea: Put polyhedron P into 
hyperbolic space and show:

where V is the max volume of a 
tetrahedron in hyperbolic space ≈ 
1.0149...

vol(P)/V ≤ # tetra interpolating.
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Goal: Find n vertex hyperbolic 
polyhedra with large 
volumes.
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