TREES, POLYGONS, HYPERBOLIC GEOMETRY

2	3	5	7	11	13	17	19	23	29
31	37	41	43	47	53	59	61	67	71
73	79	83	89	97	101	103	107	109	113
127	131	137	139	149	151	157	163	167	173
179	181	191	193	197	199	211	223	227	229
233	239	241	251	257	263	269	271	277	281
283	293	307	311	313	317	331	337	347	349
353	359	367	373	379	383	389	397	401	409
419	421	431	433	439	443	449	457	461	463
467	479	487	491	499	503	509	521	523	541
547	557	563	569	571	577	587	593	599	601
607	613	617	619	631	641	643	647	653	659
661	673	677	683	691	701	709	719	727	733
739	743	751	757	761	769	773	787	797	809
811	821	823	827	829	839	853	857	859	863
877	881	883	887	907	911	919	929	937	941
947	953	967	971	977	983	991	997	1009	1013
1019	1021	1031	1033	1039	1049	1051	1061	1063	1069
1087	1091	1093	1097	1103	1109	1117	1123	1129	1151
1153	1163	1171	1181	1187	1193	1201	1213	1217	1223
1229	1231	1237	1249	1259	1277	1279	1283	1289	1291
1297	1301	1303	1307	1319	1321	1327	1361	1367	1373
1381	1399	1409	1423	1427	1429	1433	1439	1447	1451
1453	1459	1471	1481	1483	1487	1489	1493	1499	1511
1523	1531	1543	1549	1553	1559	1567	1571	1579	1583
1597	1601	1607	1609	1613	1619	1621	1627	1637	1657
1663	1667	1669	1693	1697	1699	1709	1721	1723	1733
1741	1747	1753	1759	1777	1783	1787	1789	1801	1811
1823	1831	1847	1861	1867	1871	1873	1877	1879	1889
1901	1907	1913	1931	1933	1949	1951	1973	1979	1987
1993	1997	1999	2003	2011	2017	2027	2029	2039	2053
2063	2069	2081	2083	2087	2089	2099	2111	2113	2129
2131	2137	2141	2143	2153	2161	2179	2203	2207	2213
2221	2237	2239	2243	2251	2267	2269	2273	2281	2287
2293	2297	2309	2311	2333	2339	2341	2347	2351	2357
2371	2377	2381	2383	2380	2303	2300	2411	2417	2423

size = # of internal vertices

QUESTION: What is the maximal number of rotations needed to convert between two binary trees of size n?

QUESTION: What is the maximal number of rotations needed to convert between two binary trees of size n?

POLYGONS

POLYGONS

binary tree

(n+2)-gon

binary tree

(n+2)-gon

binary tree

(n+2)-gon

What is the maximal number of diagonal **QUESTION:** flips needed to convert between two triangulations of an (n+2)-gon?

What is the maximal number of diagonal **QUESTION:** flips needed to convert between two triangulations of an (n+2)-gon?

ANSWER:

ANSWER: $d(n) \le 2n - 6$ and equality holds if n large enough.

GEOMETRY R 5 0 4 3

HOW TO PROVE:

GEOMETRY R 5 \mathbf{G} 4 3

HOW TO PROVE:

GEOMETRY

DEFINE:

t(n+2) = min # of tetrahedra in a triangulation of a ball interpolating between two triangulations.

THEN: $t(n+2) \le d(n)$

GEOMETRY

NEED TO FIND: $K(n+2) \le t(n+2)$
GEOMETRY

IDEA:

Put polyhedron P into hyperbolic space and show: $vol(P)/V \le \#$ tetra interpolating. where V is the max volume of a tetrahedron in hyperbolic space \approx 1.0149...

GEOMETRY

If P' is a hexagon with k edges per side there are $6k^2$ triangles and $3k^2 + 3k + 1$ vertices.

If P' is a hexagon with k edges per side there are $6k^2$ triangles and $3k^2 + 3k + 1$ vertices.

If P' is a hexagon with k edges per side there are $6k^2$ triangles and $3k^2 + 3k + 1$ vertices.

$$t(n+2) \ge 6k^2$$

If P' is a hexagon with k edges per side there are $6k^2$ triangles and $3k^2 + 3k + 1$ vertices.

$$t(n+2) \ge 6k^2$$

= 2(3k^2 + 3k + 2) - 6k - 4

If P' is a hexagon with k edges per side there are $6k^2$ triangles and $3k^2 + 3k + 1$ vertices.

$$t(n+2) \ge 6k^2$$

= 2(3k^2 + 3k + 2) - 6k - 4
\ge 2(n+2) - "\sqrt{n}"