
MA 398: The lesser path taken

Recall that E2 denotes R2 with the euclidean path distance:

l(γ) =
∫ b

a
||γ ′(t)||dt

where γ : [a,b]→ R2 is a piecewise C1 path.

Theorem 1. Let γ : [a,b]→ E2 be a piecewise C1 path. Then

l(γ)≥ ||γ(b)− γ(a)||.

Furthermore, if γ is not a parameterization of the straight line, then the
inequality is strict.

Notice that this implies that a straight line is the shortest path between two
points in E2.

Proof. Let (a1,a2) = γ(a) and (b1,b2) = γ(b). Let γ(t) = (x(t),y(t)).

Claim 1: It is enough to prove the theorem for C1 curves. We begin by
showing that the theorem can be reduced to the case when γ is C1 instead
of just piecewise C1.

Since γ is piecewise C1, there exists ti so that:

a = t0 < t1 < .. . < tn = b.

On each interval [ti, ti+1] the curve γ is C1, meaning that x′ and y′ are con-
tinuous and non-zero on these intervals. (At the points ti, the derivatives x′

and y′ may not exist, but x and y have left hand and righthand continuous
derivatives.) Let γi denote the restriction of γ to [ti, ti+1].

By the triangle inequality, for any i

||γ(b)− γ(a)|| ≤∑ ||γ(ti+1)− γ(ti)||.
Also,

l(γ) = ∑ l(γi).

Thus, if for all i,
||γ(ti+1)− γ(ti)|| ≤ l(γi)

then ||γ(b)− γ(a)|| ≤ l(γ). Thus, to prove the first part of the theorem, it
suffices to prove it for the case when γ is C1.
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Assume, for the moment, that each γi is a parameterization of the line join-
ing its endpoints. If γ(ti), γ(ti+1), and γ(ti+2) where not all collinear then
the straight line joining γ(ti) to γ(ti+2) would, by basic trigonometry, be a
strictly shorter path than the path consisting of γ restricted to the interval
[ti, ti+1]. Thus, to prove the second part of the theorem, it also suffices to
prove it for the case when γ is C1. �

Claim 2: It is enough to prove the theorem for the case when x(a) = x(b) =
0.

We know that rotation and translations are isometries for both the euclidean
metric and the path metric on R2. There exists a line in R2 passing through
the γ(a) and γ(b). Translate everything so that the line passes through the
origin. Rotate everything so that the line coincides with the y-axis. The
inverses of this rotation and translation are also a rotation and a translation.
Since distances haven’t changed if the theorem holds for the new points on
the y-axis the theorem holds for the original points. �.

Claim 3: The theorem holds for C1 curves joining two points on the y-axis.

Let γ be C1 path with x(b) = x(a) = 0. Since the square root function is a
strictly increasing function, for a fixed t

||γ ′(t)||=
√

(x′(t))2 +(y′(t))2 ≥
√
(y′(t))2 = |y′(t)|.

Notice also that equality holds if and only if x′(t) = 0.

If f ≤ g are integrable functions, then
∫

f ≤
∫

g, hence∫ b

a
||γ ′(t)||dt ≥

∫ b

a
|y′(t)|dt.

We also know that (assuming the integral exists) |
∫

f | ≤
∫
| f |, consequently,

l(γ) =
∫ b

a
||γ ′(t)||dt ≥

∫ b

a
|y′(t)|dt ≥ |

∫ b

a
y′(t)|dt.

Since y′ is continuous, all those integrals exist and we can use the funda-
mental theorem of calculus to conclude that

l(γ)≥ |y(b)− y(a)|= ||γ(b)− γ(a)||,
since x(b) = x(a) = 0. We have, therefore, proven the first part of the theo-
rem.

To prove the second part, we assume that γ is not a parameterization of the
straight line path.

Claim: The Theorem is true in the case when there exists t0 ∈ (a,b) such
that x(t0) 6= 0.
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Since x(a) = 0, and since x′ is continuous, there exists t1 ∈ (a, t0) such
that x′(t1) 6= 0. Since (x′)2 is continuous, there exists an ε > 0 such that
[t1−ε, t1+ε]⊂ [a, t0] and so that for all t ∈ [t1−ε, t1+ε], (x′(t))2 > 0. Since
(x′)2 is continuous, there exists m > 0 such that for all t ∈ [t1− ε, t1 + ε],
x′(t)≥ m. Let γ1 be the restriction of γ to [a, t1− ε], γ2 be the restriction of
γ to [t1− ε, t1 + ε], and γ3 be the restriction of γ to [t1 + ε,b].

Then,
l(γ) = l(γ1)+ l(γ2)+ l(γ3).

By what we did earlier, we know that l(γ1) ≥ ||γ1(t1 − ε)− γ1(a)|| and
l(γ3)≥ ||γ3(b)− γ3(t1 + ε)||. Furthermore,

l(γ2)≥
∫ t1+ε

t1−ε

√
m+(y′(t))2 dt.

Since m> 0, this last integral is strictly bigger than the integral of
√
(y′(t))2 =

|y′(t)|. That integral is at least
√

m(2ε). Thus, by the triangle inequality,

l(γ)≥ ||γ1(t1−ε)−γ1(a)||+||γ3(b)−γ3(t1+ε)||+
√

m(2ε)≥ ||γ3(b)−γ1(a)||+2ε
√

m.

Since γ3(b) = γ(b) and γ1(a) = γ(a) and since 2ε
√

m > 0, we have shown,
as desired, that

l(γ)> ||γ(b)− γ(a)||.
�(Case)

Suppose, therefore, that γ is a C1 path such that x(t) = 0 for all t. Then
x′(t) = 0 for all t and so y′(t) 6= 0 for all t. Since y′ is continuous, either
y′> 0 or y′< 0. In either case, we see that y is a strictly monotonic function.
It is, therefore, an injection and so γ is an injection. Hence, γ is the straight
line path from γ(a) to γ(b). �

Theorem 2. Let U ⊂ Rn be path connected. Let d(P,Q) for P,Q ∈U be
defined by

d(P,Q) = inf
γ

l(γ)

where the infimum is taken over all piecewise C1 functions joining P to Q.
Then d is a metric.

Proof. We must prove that d is positive definite, symmetric, and satisfies
the triangle inequality. Recall that the length of a C1 path is the integral of
its speed and that the length of a piecewise C1 path is the sum of the lengths
of the C1 pieces.

Claim 1: d is positive definite.

Let P,Q ∈U . Since U is path-connected, there exists a piecewise C1 path
joining P to Q. That path has non-infinite length and so d(P,Q) is finite.
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Since the length of a C1 path γ is the integral of ||γ ′||, it must be non-
negative. The infimum of a set of non-negative is non-negative, so d(P,Q)≥
0. The constant path γ : [0,0]→U defined by γ(0) = P is C1 (by definition)
and so d(P,P) = 0. Other than the constant path any C1 path has non-zero
length and so (other than the constant path) every piecewise C1 path has
non-zero length. By the previous theorem, every path joining P to Q has
length at least the length of the line segment joining P to Q. That length
is ||P−Q|| which is non-zero if P 6= Q. Thus, d(P,Q) ≥ 0. Hence, d is
positive definite.

Claim 2: d is symmetric.

Let P,Q ∈U and let γ : [a,b]→U be a piecewise C1 path joining P to Q.
Define ζ : [−b,−a]→U by

ζ (t) = γ(−t).

Notice that ||ζ ′(t)||= ||γ ′(t)|| whenever γ ′ exists. Thus, ζ is piecewise C1.
Furthermore,∫ −a

−b
||ζ ′(t)||dt =−

∫ −a

−b
||γ ′(−t)||(−1)dt =

∫ b

a
||γ ′(t)||dt

by substitution. Thus, the length of γ and ζ are the same. Thus, in the
definitions of d(P,Q) and d(Q,P) we are taking the infima over the same
set of lengths and so d(P,Q) = d(Q,P).

Claim 3: d satisfies the triangle inequality

Let P,Q,R ∈U . Let ε > 0. Since d(P,Q) is the infimum of lengths of all
piecewise C1 paths in U joining P to Q, there exists a piecewise C1 path γPQ
joining P to Q with length l(γPQ)≤ d(P,Q)+ ε/2. Similarly, there exists a
piecewise C1 path γQR joining Q to R with length l(γQR) ≤ d(Q,R)+ ε/2.
The path ζ which travels along γPQ and then along γQR is a piecewise C1

path joining Q to R. It has length

Since for all ε , d(P,R)≤ l(ζ ) we have that for all ε > 0:

d(P,R)≤ d(P,Q)+d(Q,R)+ ε.

This is true for all ε > 0 and so d(P,R)≤ d(P,Q)+d(Q,R). �


