MA 398: The lesser path taken

Recall that E? denotes R? with the euclidean path distance:

= [ I wla

where y: [a,b] — R? is a piecewise C' path.

Theorem 1. Let y: [a,b] — E? be a piecewise C! path. Then
1(y) = [|v(b) = v(a)]].

Furthermore, if 7y is not a parameterization of the straight line, then the
inequality is strict.

Notice that this implies that a straight line is the shortest path between two
points in E2.

Proof. Let (ay,a;) = y(a) and (by,by) = y(b). Let y(t) = (x(1),y(1)).

Claim 1: It is enough to prove the theorem for C' curves. We begin by
showing that the theorem can be reduced to the case when 7 is C! instead
of just piecewise C!.

Since 7 is piecewise C', there exists #; so that:
a=th<fn<..<t,=hb.

On each interval [t;,#;,1] the curve y is C', meaning that x’ and y’ are con-
tinuous and non-zero on these intervals. (At the points #;, the derivatives x’
and y' may not exist, but x and y have left hand and righthand continuous
derivatives.) Let 7; denote the restriction of ¥ to [f;,#;11].

By the triangle inequality, for any i

17(b) = v(@)|] < Y I|7(ti1) = v(@)ll.
Also,
1(y) =Y 1(%).
Thus, if for all i,
ly(tiv1) —v(@)]] < 1(%)

then ||y(b) — y(a)|| < I(y). Thus, to prove the first part of the theorem, it

suffices to prove it for the case when yis C!.
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Assume, for the moment, that each ¥; is a parameterization of the line join-
ing its endpoints. If y(t;), y(ti+1), and y(#;+2) where not all collinear then
the straight line joining ¥(#;) to y(#;+2) would, by basic trigonometry, be a
strictly shorter path than the path consisting of 7y restricted to the interval
[ti,t;+1]. Thus, to prove the second part of the theorem, it also suffices to
prove it for the case when Y is C!. U

Claim 2: It is enough to prove the theorem for the case when x(a) = x(b) =
0.

We know that rotation and translations are isometries for both the euclidean
metric and the path metric on R?. There exists a line in R? passing through
the y(a) and y(b). Translate everything so that the line passes through the
origin. Rotate everything so that the line coincides with the y-axis. The
inverses of this rotation and translation are also a rotation and a translation.
Since distances haven’t changed if the theorem holds for the new points on
the y-axis the theorem holds for the original points. L.

Claim 3: The theorem holds for C! curves joining two points on the y-axis.

Let v be C! path with x(b) = x(a) = 0. Since the square root function is a
strictly increasing function, for a fixed ¢

YOl = /@02 +0/0)2 2 /00 = Y ().

Notice also that equality holds if and only if X' (z) = 0.

If f < g are integrable functions, then [ f < [ g, hence

[rolaz [ vl

We also know that (assuming the integral exists) | [ f| < [|f], consequently,

)= [ IYollarz [ Wl [ Yol

Since y' is continuous, all those integrals exist and we can use the funda-
mental theorem of calculus to conclude that

1(y) = |y(b) =y(a)| = [|v(b) = v(a)l],
since x(b) = x(a) = 0. We have, therefore, proven the first part of the theo-
rem.

To prove the second part, we assume that 7y is not a parameterization of the
straight line path.

Claim: The Theorem is true in the case when there exists 7y € (a,b) such
that x(#p) # 0.
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Since x(a) = 0, and since x’ is continuous, there exists #; € (a,fy) such
that x’'(#) # 0. Since (x')? is continuous, there exists an &€ > 0 such that
[t —&,t, +€] C [a,t9] and so that for all # € [t; —&,¢; +€], (x'(¢))? > 0. Since
(x')? is continuous, there exists m > 0 such that for all t € [t —e,t1 + €],
X'(t) > m. Let y; be the restriction of y to [a,f; — €], 7» be the restriction of
yto [t} — €,1; + €], and 3 be the restriction of y to [t; + €,b].

Then,

1Y) =1n)+1(rn)+1(n).
By what we did earlier, we know that [(y;) > ||71(t1 — €) — 1(a)|| and
1(y3) > ||y3(P) — 13(t1 + €)||. Furthermore,

t1+€
I(p) / \/m+ (' (t))?dr.

Since m > 0, this last integral is strictly bigger than the integral of v/ (y/(¢))? =
[y/(¢)|. That integral is at least /m(2¢€). Thus, by the triangle inequality,

1) = |In(t—&)—n(@)l|+]1b) -t +e)l|+vm(28) > |5 (b) —1i(a)||+2eVm.
Since y3(b) = y(b) and ¥, (a) = y(a) and since 2&+/m > 0, we have shown,

as desired, that
1(y) > ||y(b) = Y(a)]l.
[I(Case)

Suppose, therefore, that 7 is a C! path such that x(¢) = O for all . Then
X'(t) =0 for all # and so y'(¢) # O for all z. Since y' is continuous, either
y' > 0ory < 0. In either case, we see that y is a strictly monotonic function.
It is, therefore, an injection and so v is an injection. Hence, 7y is the straight
line path from y(a) to y(b). O

Theorem 2. Let U C R” be path connected. Let d(P,Q) for P,Q € U be
defined by

d(P,Q) =infi(y)

where the infimum is taken over all piecewise C' functions joining P to Q.
Then d is a metric.

Proof. We must prove that d is positive definite, symmetric, and satisfies
the triangle inequality. Recall that the length of a C! path is the integral of
its speed and that the length of a piecewise C' path is the sum of the lengths
of the C! pieces.

Claim 1: d is positive definite.

Let P,Q € U. Since U is path-connected, there exists a piecewise C! path
joining P to Q. That path has non-infinite length and so d(P, Q) is finite.
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Since the length of a C! path ¥ is the integral of ||Y/||, it must be non-
negative. The infimum of a set of non-negative is non-negative, so d(P,Q) >
0. The constant path y: [0,0] — U defined by y(0) = P is C! (by definition)
and so d(P,P) = 0. Other than the constant path any C! path has non-zero
length and so (other than the constant path) every piecewise C' path has
non-zero length. By the previous theorem, every path joining P to Q has
length at least the length of the line segment joining P to Q. That length
is ||P — Q|| which is non-zero if P # Q. Thus, d(P,Q) > 0. Hence, d is
positive definite.

Claim 2: d is symmetric.
Let P,Q € U and let y: [a,b] — U be a piecewise C! path joining P to Q.
Define {: [—b,—a] — U by

() =v(—1).

Notice that ||'(¢)|| = ||¥(¢)|| whenever ¥’ exists. Thus, { is piecewise C!.
Furthermore,

—a —a b
[ g @ldr== [ Iy ol=nde= [yl

by substitution. Thus, the length of y and { are the same. Thus, in the
definitions of d(P,Q) and d(Q,P) we are taking the infima over the same
set of lengths and so d(P,Q) = d(Q,P).

Claim 3: d satisfies the triangle inequality

Let P,OQ,R € U. Let € > 0. Since d(P,Q) is the infimum of lengths of all
piecewise C! paths in U joining P to Q, there exists a piecewise C! path /20)
joining P to Q with length [(ypp) < d(P,Q) + €/2. Similarly, there exists a
piecewise C! path ypr joining Q to R with length I(Ypr) < d(Q,R) +€/2.
The path { which travels along ypo and then along Ypr is a piecewise c!
path joining Q to R. It has length

Since for all €, d(P,R) <I({) we have that for all € > 0:
d(P.R) <d(P.0)+d(Q,R)+e.
This is true for all € > 0 and so d(P,R) < d(P,Q) +d(Q,R). O



