MA 398 Homework 8: Have you found inner product?

1. Reading

Read Section 1.4 of Bonahon (again). Read Section T.4 of Bonahon.

2. Huts

- (1) Prove that the set of isometries of \mathbb{E}^3 fixing the origin is a subset of the isometries of $S^2 = \{\mathbf{x} : ||\mathbf{x}|| = 1\}$.
- (2) Prove that if ϕ is an isometry of S^2 then there is a unique isometry $\hat{\phi}$ of \mathbb{E}^3 such that the restriction of $\hat{\phi}$ to S^2 is equal to ϕ .
- (3) Use the previous two problems to show that the set of isometries of S^2 is equal to O(3) (the set of linear maps of \mathbb{R}^3 whose transpose is the inverse.) (Hint: Appeal to some results from class.)

3. HOUSES

Recall that an inner product $\langle \cdot, \cdot \rangle$ on a (finite dimensional, real) vector space V is a symmetric bilinear map from $V \times V$ to \mathbb{R} . The standard example is the dot product on \mathbb{R}^n . Given an inner product we can define a norm on V by $||x|| = \langle x, x \rangle^{1/2}$ and a metric by d(x, y) = ||x - y||. For the following problems, you may assume that $V = \mathbb{R}^n$ and that the inner product is the standard dot product.

The goal of these exercises is to prove that any isometry of V fixing the origin is an orthogonal linear map (in the sense of linear algebra).

Suppose that ϕ is an isometry of *V*. That is, for all $v, w \in V$ we have $d(v, w) = d(\phi(v), \phi(w))$. Also assume that $\phi(\mathbf{0}) = \mathbf{0}$.

- (1) Prove that if $v \in V$, then $||\phi(v)|| = ||v||$. In particular, $\langle \phi(v), \phi(v) \rangle = \langle v, v \rangle$.
- (2) For $a, b \in V$, use the fact that $d^2(a, b) = d^2(\phi(a), \phi(b))$ to show that $\langle a, b \rangle = \langle \phi(a), \phi(b) \rangle$. (Hint: use the fact that

$$\langle a-b,a-b\rangle = ||a||^2 - 2\langle a,b\rangle + ||b||^2.)$$

As a result of this exercise, we say that " ϕ preserves inner product".

(3) Let (e_1, \ldots, e_n) be an orthonormal basis for *V*. (That is, each e_i has magnitude 1 and $\langle e_i, e_j \rangle$ equals 0 if $i \neq j$ and 1 if i = j.) For $a \in V$, write $a = \sum_{i=1}^n a_i e_i$ for $a_i \in \mathbb{R}$. Prove that if for all a

$$\phi(a) = \sum_{i=1}^n a_i \phi(e_i)$$

then ϕ is linear.

(4) Prove that for all $a \in V$, $\phi(a) = \sum_{i=1}^{n} a_i \phi(e_i)$. Conclude that ϕ is a linear map. Since ϕ is a linear map that preserves the inner product it is orthogonal.

Hint: Let $b = \sum_{i=1}^{n} a_i \phi(e_i)$ and use the bilinearity of the inner product to show that

$$0 = ||a-b||^2 = \langle a-b, a-b \rangle.$$

4. CATHEDRALS

In this section you'll investigate the properties of differentials of isometries. These results follow most easily from the classification of isometries of \mathbb{R}^2 , but you needn't appeal to that result to prove these. In fact, these results hold for Riemannian metric.

Let $U \subset \mathbb{R}^2$ and V be open subsets and for $p \in U \cup V$, let T_p denote the tangent space to p with standard basis vectors (e_1, e_2) . Recall that if $\phi : U \to V$ is differentiable, then for each $p \in U$ there is a map

L:
$$T_p \to T_{\phi(p)}$$

defined by

$$L(v) = D\phi|_p v$$

where $D\phi|_p$ is the derivative of ϕ evaluated at p.

(1) Suppose that $\phi: U \to V$ is a differentiable bijection with inverse ψ . Use the multivariable chain rule to prove that for all p

$$(D\phi|_p)^{-1} = D\psi|_{\phi(p)}$$

(2) Suppose that $\phi: U \to V$ is a differentiable bijective isometry. Prove that for each $p \in U$, the determinant of $D\phi|_p$ is ± 1 . (Hint: Use the fact that there is a $\psi: V \to U$ such that $\phi \circ \psi$ and $\psi \circ \phi$ are each the identitities and that determinant is a multiplicative function.)