
MA 398: The Grasshopper Metric

Let X ⊂ E2 be a polygon consisting of finitely many regions bounded by
finitely many line segments, half lines, or lines. Let the edges of X be

E1,E2, . . . ,E2m

Let φi be an isometry from edge E2i to edge E2i−1 for 1 ≤ i ≤ m and let X
be the result of gluing edge E2i to edge E2i−1 using φi. (This is formalized
using an equivalence relation.) For each P∈ X , let P∈ X be the equivalence
class of P, that is: the set of points glued to P, including P itself. Notice
that:

• If P is in the interior of X , then P = {P}.
• If P is on an edge but is not an endpoint, then P consists of two

points P, and one other point that is either φi(P) or φ
−1
i (P) for some

i.
• If P is an endpoint (henceforth, called a vertex) of an edge, then P

consists finitely many points, all of which are vertices of X .

We assume that X is convex. (If it is not, then we can subdivide it so that it
is.) Then euclidean distance d is a path metric on X . Recall that for P,Q∈X
we define

δ (P,Q) = mind(P,Q)

where the minimum is taken over all P ∈ P and Q ∈Q. Since X has finitely
many edges, there are only finitely many such P and Q.

Recall that a chain C in X from P to Q is a finite sequence of points in Q:

C : P = P0,P1, . . . ,Pn = Q

The length of C is
δ (C) = ∑δ (Pi,Pi+1).

Given such a chain, there is an associated virtual chain C in X :

C : Q0,P1,Q1,P2,Q2,P2, . . . ,Qn−1,Pn

such that for each i, Pi = Qi and δ (Pi,Pi+1) = d(Qi,Pi+1). We think about
the chain C as consisting of a sequence of drives and teleports. We drive
from Q0 to P1, teleport to Q1, drive to P2, teleport to Q2, etc. Notice that:

δ (C) = ∑d(Qi,Pi+1).
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For P,Q ∈ X , define the grasshopper metric d by

d(P,Q) = infδ (C)

where the infimum is taken over all chains C in X joining P to Q. Let Bε(P)
denote all points Q ∈ X such that d(P,Q)< ε .

Let P ∈ X and define ε0(P) as follows:

• If P ∈ P is in the interior of X , let ε0 be the minimum distance
between P and the points on the edges of X .
• If P ∈ P is in an edge of X , let ε0 be the minimum distance be-

tween P and the points on the edges of X not containing P. Take the
minimum over all P ∈ P.

Theorem 1. Suppose that X is the union of convex polygons with edge
gluings {φi}. and that X is connected. Let P ∈ X and let 0 < ε ≤ ε0(P). Let
π : X → X be the quotient map. Then the following are true:

(1) For all Q ∈ Bε(P) there exist P ∈ P and Q ∈ Q such that d(P,Q) =
d(P,Q).

(2) π−1(Bε(P) is the disjoint union of Bε(P) where the union is taken
over all P ∈ P.

Proof. Let ρ > 0 be such that ε +ρ < ε0. and choose a chain C from P to
Q having δ (C)< d(P,C)+ρ . Out of all such

C : P0,P1, . . . ,Pn

choose C so as to minimize n. We claim that n = 1. To see this, let

C : Q0,P1,Q1,P2, . . . ,Qn−1,Pn

be the associated chain in Q.

Case 1: P1 = Q1

In this case we have, by the triangle inequality, d(Q0,P2) ≤ d(Q0,Q1) +
d(Q1,Q2). The chain

C′ : Q0,P2,Q2, . . . ,Qn−1,Pn

therefore has fewer terms and

C′ : P0,P2, . . . ,Pn

has δ (C′) ≤ δ (C) < d(P,Q)+ρ and has fewer terms that C. This contra-
dicts our choice of C.

Case 2: P1 and Q1 lie on edges of X .
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By the definition of the gluing, there exists a isometry φi from any edge
containing P1 to an edge containing Q1 or vice versa. Without loss of gen-
erality, assume φi(P1) = Q1. Since d(Q0,P1)≤ d(P,Q)+ρ < ε0, the point
Q0 must lie on an edge of X containing P1. Let φi be the isometry such that
φi(P1) = Q1 and φi is defined on Q0. Then because φi is an isometry

d(Q0,P1)+d(Q1,P2) = d(φi(Q0),Q1)+d(Q1,P2)≤ d(φi(Q0),P2).

Hence, the chain
C′ : φi(Q0),P2,Q2, . . . ,Qn−1,Pn

is a chain with fewer terms then C and its quotient chain

C′ : P0,P2, . . . ,Pn

is still a chain from P to Q with δ (C′) < d(P,Q)+ρ. This contradicts our
choice of C. �

Notice that the previous result shows that there do not exist distinct points
P,Q ∈ X with d(P,Q) = 0. Hence, the grasshopper metric is a metric.

We now improve this to show

Theorem 2. Let P∈ X and let ε < ε0/3. Then for each P∈ P, the restricted
map

π : Bε(P)→ Bε(P)
is an isometry (not necessarily surjective).

Proof. Let Q ∈ Bε(P). Notice also that if P ∈ P is not on an edge of X , then
Q is not on an edge of X . If P is on an edge of X , then either Q is not on an
edge of X or it is on an edge that contains P.

Let v be a point on an edge of X not containing P. Suppose that d(Q,v) <
2ε/3.Then,

d(P,v)≤ d(P,Q)+d(Q,v)< ε/3+2ε/3 = ε.

But d(P,v) ≥ ε0(P) > ε by the definition of ε . Hence, 2ε/3 ≤ ε0(Q). By
the previous theorem, this implies that if Q′ ∈ B2ε/3(Q), then d(Q,Q′) =
d(Q,Q′).

Now suppose that Q,Q′ ∈ Bε(P). By the triangle inequality, d(Q,Q′) ≤
d(Q,P)+d(P,Q)< 2ε/3. Consequently, d(Q,Q′) = d(Q,Q′). �


