MA 398: The Grasshopper Metric

Let X C E? be a polygon consisting of finitely many regions bounded by
finitely many line segments, half lines, or lines. Let the edges of X be

EiE, ... .Eopy

Let ¢; be an isometry from edge E,; to edge Ey;_| for 1 <i<m and let X
be the result of gluing edge E»; to edge E;—1 using ¢;. (This is formalized
using an equivalence relation.) For each P € X, let P € X be the equivalence
class of P, that is: the set of points glued to P, including P itself. Notice
that:

e If P is in the interior of X, then P = {P}.

e If P is on an edge but is not an endpoint, then P consists of two
points P, and one other point that is either ¢;(P) or ¢! (P) for some
i

e If P is an endpoint (henceforth, called a vertex) of an edge, then P
consists finitely many points, all of which are vertices of X.

We assume that X is convex. (If it is not, then we can subdivide it so that it
is.) Then euclidean distance d is a path metric on X. Recall that for P,Q € X
we define

S(P,Q) = mind (P, Q)

where the minimum is taken over all P € P and Q € Q. Since X has finitely
many edges, there are only finitely many such P and Q.

Recall that a chain C in X from P to Q is a finite sequence of points in Q:
C:P=Py,Py,....P,=0Q
The length of C is
8(C) =Y 6(Pi,Pis1).
Given such a chain, there i1s an associated virtual chain C in X:
C:00,P,01,P,00,P,...,0n—1,F,

such that for each i, P; = Q; and §(P;,P; 1) = d(Q;, Py 1). We think about
the chain C as consisting of a sequence of drives and teleports. We drive
from Qg to Py, teleport to Qy, drive to P», teleport to 5, etc. Notice that:

8(C) =) d(Qi,Pis1)-
1



For P,Q € X, define the grasshopper metric d by
d(P,Q) =inf§(C)

where the infimum is taken over all chains C in X joining P to Q. Let B¢(P)
denote all points Q € X such that d(P,Q) < €.

Let P € X and define &(P) as follows:

e If P € P is in the interior of X, let & be the minimum distance
between P and the points on the edges of X.

o If P € P is in an edge of X, let & be the minimum distance be-
tween P and the points on the edges of X not containing P. Take the
minimum over all P € P.

Theorem 1. Suppose that X is the union of convex polygons with edge
gluings {¢;}. and that X is connected. Let P € X and let 0 < & < &y(P). Let
7: X — X be the quotient map. Then the following are true:

(1) For all Q € B¢(P) there exist P € P and Q € Q such that d(P,Q) =
d(P,Q).

(2) n~!(Be(P) is the disjoint union of B¢(P) where the union is taken
overall P € P.

Proof. Let p > 0 be such that € +p < &. and choose a chain C from P to
Q having 8(C) < d(P,C) + p. Out of all such

C:Py,Py,...,P,
choose C so as to minimize n. We claim that n = 1. To see this, let
C:00,P1,01,P,...,0n-1,F
be the associated chain in Q.
Case 1: P, = Qg

In this case we have, by the triangle inequality, d(Qo,Ps) < d(Qo,01) +
d(Q1,Q»). The chain

C':00,P,02,...,0n-1,P
therefore has fewer terms and
EI : ﬁo,ﬁz, e ,Fn

has 8(C') < 6(C) < d(P,Q) + p and has fewer terms that C. This contra-
dicts our choice of C.

Case 2: P; and Qg lie on edges of X.
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By the definition of the gluing, there exists a isometry ¢; from any edge
containing P; to an edge containing Q; or vice versa. Without loss of gen-
erality, assume ¢;(P;) = Q. Since d(Qy,P;) < d(P,Q)+ p < &, the point
Qo must lie on an edge of X containing P;. Let ¢; be the isometry such that
¢:(P1) = Q1 and ¢; is defined on Q. Then because ¢; is an isometry

d(Qo,P1) +d(Q1,P2) = d(9i(Q0), Q1) +d(Q1,P2) < d(9i(Qo), P>).
Hence, the chain
C/ : ¢i(Q0)7P27Q27' . '7Qn—17Pn
is a chain with fewer terms then C and its quotient chain
EJ . Fo,pz, ce ,Fn
is still a chain from P to Q with 8(C') < d(P,Q) + p. This contradicts our
choice of C. O

Notice that the previous result shows that there do not exist distinct points
P,0 € X with d(P,Q) = 0. Hence, the grasshopper metric is a metric.

We now improve this to show

Theorem 2. Let P € X and let € < &/3. Then for each P € P, the restricted
map

m: Be(P) — Be(P)
is an isometry (not necessarily surjective).

Proof. Let Q € B¢(P). Notice also that if P € P is not on an edge of X, then
Q is not on an edge of X. If P is on an edge of X, then either Q is not on an
edge of X or it is on an edge that contains P.

Let v be a point on an edge of X not containing P. Suppose that d(Q,v) <
2€/3.Then,

d(P,v) <d(P,Q)+d(Q,v) <e/3+2¢e/3=E.

But d(P,v) > & (P) > € by the definition of €. Hence, 2¢/3 < &(Q). B
the previous theorem, this implies that if Q" € B,¢/3(Q), then d(Q, Q')

d(0,0).
Now suppose that Q,Q" € B¢(P). By the triangle inequality, d(Q,Q’)
d(Q,P)+d(P,Q) < 2¢/3. Consequently, d(Q, Q') = d(0,0).
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