These questions cover only the material since Exam 2. The first few problems are repeated from the previous practice exam.

- (1) Find a parameterization of the surface formed by the graph of $z = x^2 y^2$ with (x, y) in the triangle in the *xy*-plane formed by the *x*-axis, the *y*-axis, and the line y = -x + 1.
- (2) Is the surface in the previous problem a smooth surface? If no, at what points is it not smooth?
- (3) Find a parameterization of the surface formed by rotating the curve $\begin{pmatrix} \cos t + 5\\ 2\sin t \end{pmatrix}$ with $0 \le t \le 2\pi$ around the *y*-axis.
- (4) Consider the surface

$$\mathbf{X}(s,t) = \begin{pmatrix} 2\sin 3t + t\\ \cos 2s\\ t^2 + s^2 \end{pmatrix}, \quad 0 \le t \le \pi/4, \quad 0 \le s \le \pi$$

Find the tangent and normal vectors to **X** at the point $(\pi/6, \pi/6)$. Is the surface smooth?

- (5) Let *S* be the disc of radius 1 centered at (1,0,0) in \mathbb{R}^3 which is parallel to the *yz*-plane. Orient *S* with normal vector pointing in the direction of the postive *x*-axis. Use the definition of surface integral to calculate the flux of $\mathbf{F}(x, y, z) = (-xy, yz, xz)$ through *S*.
- (6) Use the same surface *S* and **F** as in the previous problem, but now use Stoke's theorem to calculate the flux of the curl from the previous problem.
- (7) Give precise statements of Stokes' Theorem and the Divergence Theorem.
- (8) State and prove Gauss' law for gravity.
- (9) Use Gauss' Law for gravity and symmetry considerations to prove the shell theorem.
- (10) Suppose that a vector field **F** defined on $\mathbb{R}^3 \{\mathbf{0}\}$ has a flux of 21 through a sphere of radius 2 (oriented outward). If the divergence of

F is a constant -1, what is the flux of **F** through a sphere of radius 4 (oriented outward)?

- (11) Suppose that **F** is a C¹ vector field that is everywhere tangent to the unit sphere in \mathbb{R}^3 . Explain why the flux of **F** through the sphere must be zero. If **F** is also C¹ everywhere inside the sphere, what can you conclude about the divergence of **F** inside the sphere?
- (12) Suppose that \mathbf{F} is a \mathbf{C}^1 vector field and that *S* is a compact surface without boundary. If the circulation of \mathbf{F} around *S* is non-zero, what can you conclude about *S*?
- (13) Suppose that two surfaces S_1 and S_2 have the same oriented boundary and that they are disjoint except along their boundaries. Suppose that **F** is a C¹ vector field defined on the region bounded by the union of S_1 and S_2 . Explain why the circulation of **F** is the same on S_1 and S_2 . If the vector field is incompressible, explain why the flux through S_1 is the same as the flux through S_2 .