MA 262: Practice Exam 3 Name:

These questions cover only the material since Exam 2. The first few prob-
lems are repeated from the previous practice exam.

(1) Find a parameterization of the surface formed by the graph of z =
x?> —y? with (x,y) in the triangle in the xy-plane formed by the x-
axis, the y-axis, and the line y = —x+ 1.

Solution: How about:

s

X(s,t) = t
s> —12

with0<s<land0<¢t< —s+1?

(2) Is the surface in the previous problem a smooth surface? If no, at
what points is it not smooth?

Solution: The answer depends (somewhat) on your parameteriza-
tion. The answer here is based on the parameterization above.

You can calculate that
T, = (1,0,2s)
Tl‘ (07 1a _2t)
N = (-2s,21,1)

Since N is never 0, and since X is obviously C!, X is a smooth
surface.

Solution: How about

coss(cost+5)
X(s,t) = 2sint
sins(cost +5)

forO0<tr<2mand 0 <s <2m?
(3) Consider the surface

2s8in3t +t¢
X(s,t) = cos2s , 0<t<m/4, 0<s<m
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Find the tangent and normal vectors to X at the point (/6,7/6). Is
the surface smooth?

Solution:

We have

T, = (0,—2sin2s,2s)
T, = (6cos(3r)+1,0,2r)
N = (—4rsin2s,2s5(6cos3t+1),2sin2s(6cos3r+1)

Plug (7 /6,7/6) into the above equations to get:

T, = (0,—v/3,71/3)
Tl = (170,7[/3)
N = (—ﬂ\/§/3,ﬂ'/3,\/§)

Since N(7/6,7/6) # 0, the surface is smooth at that point.

(4) Let S be the disc of radius 1 centered at (1,0,0) in R which is
parallel to the yz-plane. Orient S with normal vector pointing in the
direction of the postive x-axis. Use the definition of surface integral
to calculate the flux of F(x,y,z) = (—xy, yz,xz) through S.

Solution: Parameterize S as:

with (s,) in the region D defined by 0 < s>+ < 1. It is easy to
calculate N = (1,0,0). Then,

F-N(x,y,2) = —xy.

Thus, by the definition of surface integral, the flux of F through S is

//DF-N(X(s,t))dA://D—sdsdt.

Change to polar coordinates by setting s = rcos 6 and ¢ = rsin .
Then the integral above is equal to (by the change of coordinates

theorem):
1 2¢
/ / —r?cos0dOdr
0 Jo

Since f027r cos 8d0 = 0, the flux equals 0.
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(5) Use the same surface S and F as in the previous problem, but now
use Stoke’s theorem to calculate the flux of the curl from the previ-
ous problem.

Solution: By Stoke’s theorem,

//curlF-dS _ / Fds.
S aS

Parameterize dS as:
1
x(t) = | cost
sint

with 0 <r <27.

Notice that x gives d§ the orientation induced by the orientation on
S. Then,

2
/F-ds:/ F(x)() -X(¢) dr.
X 0
Calculations show that this equals

02” —costsin®t +sintcostdt =

= 0.

027: —costsin’tdr + fozﬂ sinz cost dt

(6) Give precise statements of Stokes’ Theorem and the Divergence
Theorem.

Stokes’ Theorem: Let S C R3 be a compact oriented piecewise
C' surface such that 95 is piecewise C'. Give dS the orientation
induced by S. Suppose that F is a C! vector field defined on S. Then

//curlF~dS:/F-ds.
S S

Divergence Theorem Suppose that V C R? is a compact 3-dimensional
region with piecewise C! boundary. Give dV the orientation with
outward pointing normal. If F is a C! vector field defined through-

out V, then
///diVFdV:/ F-dsSs.
7 A%

(7) State and prove Gauss’ law for gravity.

Solution: See the course notes.
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(8) Use Gauss’ Law for gravity and symmetry considerations to prove
the shell theorem.

Solution: See the course notes.

(9) Suppose that a vector field F defined on R? — {0} has a flux of 21
through a sphere of radius 2 (oriented outward). If the divergence of
F is a constant —1, what is the flux of F through a sphere of radius
4 (oriented outward)?

Solution: Let S, be the sphere of radius 2 and let S4 be the sphere
of radius 4. Let V be the region between them. Notice that F is C!
throughout V. If we give dV the outward pointing orientation, then
S, is oriented “the wrong way”. Thus, by the divergence theorem:

—// F-dS -+ F-dS://F-dS:///diVFdV.
%2 5 av v

Since divF = —1, the last integral is just the negative of the volume
of V. The volume of V is 37(4)> — $7(2)3 = 647. Thus,

_// F-dS+ [[ F.dS——64
SH Sy

Since the flux through §; is 21, we have

/ F-dS— 64421 = —43.
S4

(10) Suppose that F is a C! vector field that is everywhere tangent to the
unit sphere in R3. Explain why the flux of F through the sphere
must be zero. If F is also C! everywhere inside the sphere, what can
you conclude about the divergence of F inside the sphere?

Solution: Let n be the unit normal to the unit sphere S. We have:

//F-dS:{/EndS

S
This equals 0, since F and n are always perpendicular on the sphere.

By the divergence theorem, if F is C! inside the sphere, then the
integral of the divergence of F over the unit ball is equal to the flux
of F across S, which we just calculated to be zero. Thus, integrating
the divergence of F over the unit ball gives zero.
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Suppose that F is a C! vector field and that S is a compact surface
without boundary. If the circulation of F around S is non-zero, what
can you conclude about §?

Solution: S must be non-orientable. If it were orientable we could
apply Stokes’ theorem to conclude:

0#//curlF-dS:/ F.ds.
& S

Since dS = &, this last integral must be zero.

Suppose that two surfaces S| and S, have the same oriented bound-
ary and that they are disjoint except along their boundaries. Sup-
pose that F is a C! vector field defined on the region bounded by the
union of S; and S,. Explain why the circulation of F is the same on
S1 and S>. If the vector field is incompressible, explain why the flux
through S is the same as the flux through S>.

Solution: By Stokes theorem, the circulation of F on each S; is
equal to the circulation of F around the boundary. Since they have
the same oriented boundary, they must have the same circulation.

For F to be incompressible, means that divF = 0. Let S be the
union of S; and S, without outward normal. Let V be the region
bounded by S. One of S; or §, has the wrong orientation (since they
induce the same orienation on their common boundary). Thus by
the divergence theorem:

oz/v//didev:a/V/F-dsziS/l/F-dSq:S//Eds.

Thus, the fluxes are the same.



