
MA 262: Practice Exam 2 Selected Solutions

(1) Give an example of a vector field F having curlF = 0, but where F
is not a gradient field.

(2) Know the formal definitions of the following terms or the complete
precise statements of the following theorems:

(a) Green’s theorem

(b) planar divergence theorem

(c) Stokes’ theorem

(d) Poincaré’s theorem

(e) parameterized surface

(f) orientable surface

(g) one-sided surface

(3) Give an example of a one-sided surface in R3.

(4) Give an example of an orientable surface in R3.

(5) Be able to do the following:

(a) Suppose that D⊂R2 is the union of two “nice” regions D1 and
D2 along an edge C in their boundaries. Suppose that F is a
C1 vector field defined on the union D = D1 ∪D2. Prove that∫

∂D F ·ds =
∫

∂D1
F ·ds+

∫
∂D2

F ·ds.

(b) Give an outline of the proof of Green’s theorem.

(c) Suppose that X ⊂ R2 is a simply connected open subset and
that F : X → R2 has curlF = 0. Prove that if C is a simple
closed curve in X then

∫
C F ·ds = 0. Use this to prove that F is

conservative.

(6) Let D ⊂ R2 be the region bounded by the graphs of the equations
y= x3 and y= x and with x≥ 0. Suppose that F(x,y) = (xy+y,y2x).

(a) Orient ∂D so that D is always on the left. Calculate
∫

∂D
F · ds

directly.
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Solution: Parameterize the graph of y = x as (1− t,1− t) and
the graph of y = x3 as (t, t3) both with 0 ≤ t ≤ 1. Notice that
this gives ∂D1 the “correct” orientation for Green’s theorem..
Let C1 and C2 be the pieces of ∂D1 corresponding to y = x3 and
y = x respectively. Then: ∫

∂D F ·ds =

∫ 1
0

(
(1− t)2 +(1− t)

(1− t)3

)
·
(
−1
−1

)
+

(
t4 + t3

t7

)
·
(

1
3t2

)
dt =

∫ 1
0 −(1− t)2− (1− t)− (1− t)3 +(t4 + t3)+3t9 dt =

(1− t)3/3+(1− t)2/2+(1− t)4/4+ t5/5+ t4/4+3t10/10
∣∣∣1
0

=

1/5+1/4+3/10−1/3−1/2−1/4 =
−1/3

(b) Calculate
∫∫
D

curlF ·kdA directly.

Solution: ∫ 1
0
∫ x

x3 curlF ·kdA =∫ 1
0
∫ x

x3 y2− x−1dydx =∫ 1
0 x3/3− x2− x− x9/3+ x4 + x3 dx =

1/12−1/3−1/2−1/30+1/5+1/4 =
−1/3

(c) What is the relevance of Green’s theorem to the preceding prob-
lems?

Solution: Since F is defined on D and since ∂D is piece-
wise C1, Green’s theorem asserts the previous two calculations
should be equal. Which they are.

(d) Is the vector field F conservative?

Solution: No. If it were conservative the integral
∫

∂D F · ds
would be 0. (There are other possible reasons.)

(7) What is the flux of the vector field F(x,y) = (−y2x,x2y) across the
circle of radius 2 centered at the origin? Just set up an appropriate
single-variable integral. You do not need to solve it.

Solution: Let x(t) = (2cos t,2sin t) for 0 ≤ t ≤ 2π . The unit nor-
mal pointing outside the region bounded by the circle is n(t) =



3

(cos t,sin(t)). Consequently, the flux is∫
x

F ·nds =
∫ 2π

0

(
−8sin2 t cos t
8cos2 t sin t

)
·
(

cos t
sin t

)
(2)dt.

This is equal to:

2
∫ 2π

0
−8cos2 t sin2 t +8sin2 t cos2 t dt = 0.

(8) What is the circulation of the vector field F(x,y)= (−y2x,x2y) around
the circle of radius 2 centered at the origin? Just set up an appropri-
ate single-variable integral. You do not need to solve it.

Solution: We use the same notation as in the previous problem. The
circulation of the vector field is:∫

x
F ·ds =

∫ 2π

0

(
−8sin2 t cos t
8cos2 t sin t

)
·
(
−2sin t
2cos t

)
dt.

This is equal to:∫ 2π

0
16sin3 t cos t +16cos3 t sin t dt.

(9) Recall that if two particles, each with charge +1 are at points p and
q respectively, the electric force exerted by the particle at p on the
particle at q is 1

||p−q||3 (q−p).

A wire C is bent into the shape of a circle of radius 1 centered at the
origin in R2. It is given a charge of +1 and so generates an electric
field F. How much work is done in moving a particle with charge
+1 from (1/2,0) to (0,0)? Does it matter what path is taken? Why
not? (You may leave your answer in integral form.)

Solution: The scalar field g(y) = −1
||x−y|| is a potential function for

G(y) = 1
||x−y||3 (y−x).

By the principle of superposition, we can obtain a potential function
for F by calculation:

f (a,b) =
∫

C

−1√
(x−a)2 +(y−b)2

ds

since −1√
a2+b2 is a potential function for the electric field generated by

a single particle at the origin. Choosing the usual parameterization
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for C and letting b = 0, we obtain:

f (a,0) =−
∫ 2π

0

1√
1−2acos t +a2

dt.

Since we have a potential function we can simply evaluate f on
the endpoints of the path (the path not mattering the slightest) and
subtract in order to find the work. So for (a) we obtain:

f (0,0)− f (1/2,0) =−(2π−
∫ 2π

0

1√
1− cos t +1/4

dt)

(10) Suppose that C1 and C2 are C1 paths bounding a compact region A
in R2 . Suppose that F is a C1 vector field defined on A such that the
scalar curl of F is a constant 9. State and explain the relationship be-
tween

∫
C1

F ·ds and
∫

C2
F ·ds if both are oriented counter-clockwise.

Solution: Since F is C1 on the compact region A, we may apply
Green’s theorem to find:

9Area(A) =
∫∫
D

scalar curlFdA =
∫

∂A

F ·ds.

One of C1 or C2 is oriented so that A is on the right. The other one
is oriented so that A is on the left. Hence,∫

∂A

F ·ds =±
∫

C1

F ·ds∓
∫

C2

F ·ds.

Since this equals 9Area(A), the two line integrals differ by 9Area(A).

(11) Suppose that C1 and C2 are C1 simple closed curves bounding a
region A in R2 so that A is on the left of both C1 and C2. Suppose
that F is a C1 vector field defined on A such that the divergence of F
is a constant 9. State and explain the relationship between the flux
of F through C1 and the flux of F through C2.

Solution: Since F is C1 on the compact region A, we can use the
planar divergence theorem. The flux through the boundary of A is
equal to±

∫
C1

F ·ds∓
∫

C2
F ·ds. The planar divergence theorem says

this is equal to
∫∫
D

divFdA = 9Area(A). Hence, the flux through C1

and the flux through C2 differ by 9 times the area of A.

(12) (Challenge!) Suppose that D is the region obtained from R2 by
removing 2 points p1 and p2. Suppose that F is a C1 vector field
defined on D with curl constantly zero.
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(a) Are there simple closed curves C1,C2, . . . in D such that the
sequence

(∫
Ci

F ·ds
)

diverges to infinity?

Solution: By Green’s theorem any two disjoint curves oriented
in the same direction and bounding a region A not containing
either p1 or p2 must produce the same value when F is inte-
grated along them. (Be sure you understand this. HW 7 had
several problems on this idea.) A simple closed curve in R2

that does not pass through either p1 or p2 has either 0, 1, or
2 of the points in the compact region with boundary the curve.
Thus, if C is a simple closed curve the integral

∫
C F ·ds can take

one of only four possible values. (Do you see why?)

(b) What if C1,C2, . . . are simple closed curves, but the scalar curl
of F is always 1 (instead of 0)?

Solution: Let M be the maximum of ||p1|| and ||p2||. Let Ci
be a circle of radius M+ i oriented counterclockwise. The area
between Ci and Ci+1 is

π(M+ i+1)2−π(M+ i)2 = π(2M+2i+1).

By problem (10), we have∫
Ci+1

F ·ds−
∫

Ci

F ·ds = π(2M+2i+1)

Thus, the sequence
(∫

Ci
F ·ds

)
diverges to infinity.

(13) Is the vector field F(x,y,z) = 1
x2+y2+z2

x
y
z

 conservative on its do-

main? Explain.

Solution: An easy calculation shows that the curl of F is the zero
vector. Since R3−0 is simply connected, by Poincaré’s theorem, F
is conservative. Alternatively, it is not difficult to produce f (x,y,z)=
ln(x2+y2+z2)

2 as a potential function.

(14) Is the vector field F(x,y,z) = 1
x2+y2

−y
x
0

 conservative on its do-

main?

Solution: No. F has a closed flow line tracing out the unit circle in
the xy plane.
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(15) Find a single variable integral representing the area enclosed by the
path φ(t) = (2cos(2t),3sin(3t)) for −π/3≤ t ≤ π/3.

Solution: We note that the orientation of the path φ has the bounded
region D always on the left. Hence by Green’s theorem and the fact

that curl
(

0
x

)
= 1:

∫∫
D 1dA =

∫ π/3
−π/3

(
0

2cos2t

)
·
(
−4sin2t
9cos3t

)
dt

=
∫ π/3
−π/3 18cos(2t)cos(3t)dt.

(16) Let σ : [1,2]→R2 be the path σ(t)= (et−1,sin(π/t)). Let F(x,y)=
(2xcosy,−x2 siny). Compute

∫
σ

F ·ds.

Hint: Show and then use the fact that the vector field is conserva-
tive.

Solution: It is easy to see that f (x,y) = x2 cosy is a potential func-
tion for F. The requested integral is then equal to f (σ(2))− f (σ(1)).
You could also choose a nicer path joining the endpoints of σ and
integrate over that instead.

(17) Find a parameterization of the surface formed by the graph of z =
x2− y2 with (x,y) in the triangle in the xy-plane formed by the x-
axis, the y-axis, and the line y =−x+1.

Solution: How about:

X(s, t) =

 s
t

s2− t2


with 0≤ s≤ 1 and 0≤ t ≤−s+1?

(18) Is the surface in the previous problem a smooth surface? If no, at
what points is it not smooth?

Solution: The answer depends (somewhat) on your parameteriza-
tion. The answer here is based on the parameterization above.

You can calculate that

Ts = (1,0,2s)
Tt = (0,1,−2t)
N = (−2s,2t,1)
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Since N is never 0, and since X is obviously C1, X is a smooth
surface.

(19) Find a parameterization of the surface formed by rotating the curve(
cos t +5

2sin t

)
with 0≤ t ≤ 2π around the y-axis.

Solution: How about

X(s, t) =

coss(cos t +5)
2sin t

sins(cos t +5)


for 0≤ t ≤ 2π and 0≤ s≤ 2π?

(20) Consider the surface

X(s, t) =

2sin3t + t
cos2s
t2 + s2

 , 0≤ t ≤ π/4, 0≤ s≤ π

Find the tangent and normal vectors to X at the point (π/6,π/6). Is
the surface smooth?

Solution:

We have
Ts = (0,−2sin2s,2s)
Tt = (6cos(3t)+1,0,2t)
N = (−4t sin2s,2s(6cos3t +1),2sin2s(6cos3t +1)

Plug (π/6,π/6) into the above equations to get:

Ts = (0,−
√

3,π/3)
Tt = (1,0,π/3)
N = (−π

√
3/3,π/3,

√
3)

Since N(π/6,π/6) 6= 0, the surface is smooth at that point.

(21) Let S be the disc of radius 1 centered at (1,0,0) in R3 which is
parallel to the yz-plane. Orient S with normal vector pointing in the
direction of the postive x-axis. Use the definition of surface integral
to calculate the flux of F(x,y,z) = (−xy,yz,xz) through S.

Solution: Parameterize S as:

X(s, t) =

1
s
t


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with (s, t) in the region D defined by 0 ≤ s2 + t2 ≤ 1. It is easy to
calculate N = (1,0,0). Then,

F ·N(x,y,z) =−xy.

Thus, by the definition of surface integral, the flux of F through S is∫∫
D

F ·N(X(s, t))dA =
∫∫

D
−sdsdt.

Change to polar coordinates by setting s = r cosθ and t = r sinθ .
Then the integral above is equal to (by the change of coordinates
theorem): ∫ 1

0

∫ 2π

0
−r2 cosθ dθdr

Since
∫ 2π

0 cosθdθ = 0, the flux equals 0.

(22) Use the same surface S and F as in the previous problem, but now
use Stoke’s theorem to calculate the flux of the curl from the previ-
ous problem.

Solution: By Stoke’s theorem,∫∫
S

curlF ·dS =
∫

∂S
Fds.

Parameterize ∂S as:

x(t) =

 1
cos t
sin t


with 0≤ t ≤ 2π .

Notice that x gives ∂S the orientation induced by the orientation on
S. Then, ∫

x
F ·ds =

∫ 2π

0
F(x)(t) ·x′(t)dt.

Calculations show that this equals∫ 2π

0 −cos t sin2 t + sin t cos t dt =
∫ 2π

0 −cos t sin2 t dt +
∫ 2π

0 sin t cos t dt
= 0.


