
MA 262: Practice Exam 1 Solutions Name:

This practice exam is much longer than the actual exam.

(1) Let F (x, y) = (x2y, y2x, 3x− 2yx). Find the derivative of F .

Solution:

DF (x, y) =

 2xy x2

y2 2yx
3− 2y −2x


(2) Let F (x, y) = (x − y, x + y) and let G(x, y) = (x cos y, x sin y).

Find the derivative of F ◦G using the chain rule.

Solution:

DF (x, y) =

(
1 −1
1 1

)

DG(x, y) =

(
cos y −x sin y
sin y x cos y

)
D(F ◦G)(x, y) = DF (G(x, y))DG(x, y)

=

(
1 −1
1 1

)(
cos y −x sin y
sin y x cos y

)
=

(
cos y − sin y −x sin y − x cos y
cos y + sin y −x sin y + x cos y

)
(3) Suppose that a rotating circle of radius 1 is travelling through the

plane, so that at time t seconds the center of the circle is at the point
(t, sin t). Let P be the point on the circle which is at (0, 1) at time
t = 0. If the circle makes 3 revolutions per second, what is the path
x(t) taken by the point P ?

Solution: The rotation of the P relative to the center of the circle
(that is, in Tc(t)) can be described by the path (cos(6πt+π/2), sin(6πt+
π/2)). Thus, x(t) = (cos(6πt+ π/2) + t, sin(6πt+ π/2) + sin t).

(4) A rotating circle of radius 1 follows a helical path in R3 so that at
time t the center of the circle is at (sin t, cos t, t). At each time t,
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2

the circle lies in the osculating plane. (That is, the circle lies in the
plane spanned by the unit tangent and the unit normal vectors.) Let
P be the point on the circle which is at (1, 0) at time t = 0. The
circle completes one rotation every 2π seconds. Find a formula x(t)
for the path taken by the point P .

(5) A rotating circle of radius 1 follows a helical path in R3 so that at
time t the center of the circle is at (sin t, cos t, t). At each time t,
the circle lies in the osculating plane. (That is, the circle lies in the
plane spanned by the unit tangent and the unit normal vectors.) Let
P be the point on the circle which is at (1, 0) at time t = 0. The
circle completes one rotation every 2π seconds. Find a formula x(t)
for the path taken by the point P . (Hint: Express the center of the
circle as a combination of the unit tangent and normal vectors.)

Solution: Relative to the center of the circle (that is, in Tc(t)) the
point P follows the path cos tT + sin tN where T and N are the
unit tangent and unit normal vectors to c(t) = (sin t, cos t, t) re-
spectively. Those formulae are

T(t) = 1√
2

 cos t
− sin t

1


N(t) =

− sin t
− cos t

0



Thus,

c(t) = cos tT+ sin tN+ c(t)

= cos t√
2

 cos t
− sin t

1

+ sin t

− sin t
− cos t

0

+

sin t
cos t
t

 .

(6) Explain what it means for curvature to be an intrinsic quantity.

Solution: The curvature of a path x(t) at t0, depends only on the
curve itself at t0, not on the parameterization x.

(7) Prove that the curvature at any point of a circle of radius r is 1/r.
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Solution: A circle of radius r can be parameterized as x(t) =
(r cos t, r sin t) for 0 ≤ t ≤ 2π. We have:

x′(t) = (−r sin t, r cos t)
||x′(t)|| = r

T = (− sin t, cos t)
T′ = (− cos t,− sin t)

||T′|| = 1
κ(t) = ||T′||/||x′||

= 1/r.

(8) Let x(t) = (cos t, sin t, t) for 1 ≤ t ≤ 2. Find T, N, and B (that is,
the moving frame) for x and also find κ (the curvature).

Solution: We have:

x′(t) = (− sin t, cos t, t)

||x′(t)|| =
√
2

T(t) = 1√
2
(− sin t, cos t, 1)

T′(t) = 1√
2
(− cos t,− sin t, 0)

N(t) = (− cos t,− sin t, 0)
B(t) = 1√

2
(sin t,− cos t, 1)

κ(t) = 1/2

(9) Suppose that x : [a, b]→ Rn is a C1 path such that for all t, ||x(t)|| =
5. Prove that at each t, x(t) and x′(t) are perpendicular.

Solution: Since 5 = x(t) · x(t), by the product rule, we have 0 =
2x · x′, implying that x and x′ are perpendicular.

(10) A particle is following the path x(t) = (t, t2, t3) for 1 ≤ t ≤ 5.
Find an integral representing the distance travelled by the particle
after t seconds.

Solution: The distance travelled after t seconds is

s(t) =
∫ t
1
||x′(τ)|| dτ

=
∫ t
1

√
1 + 4t2 + 9t4 dτ.

(11) Let x(t) = (t2, 3t2) for t ≥ 1. Reparameterize x by arc length.

Solution: We compute,

s(t) =

∫ t

1

√
4τ 2 + 36τ 2 dτ =

∫ t

1

2τ
√
10 dτ. =

√
10(t2 − 1).
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Then,

s−1(t) =

√
t/
√
10 + 1

Consequently,

y(t) = x ◦ s−1(t) = (t/
√
10 + 1, 3t/

√
10 + 3)

is the reparameterization of x by arclength.

(12) Suppose that x(t) is a path in Rn such that x(0) = a and x(1) = b
(that is, x is a path joining a to b.) Find a path which has the same
image as x but which joins b to a.

Solution: y : [−1, 0] → Rn defined by y(t) = x(−t) will do the
trick since y(0) = a and y(−1) = b.

(13) Let x : [a, b]→ Rn be a path with x′(t) 6= 0 for all t. Let y = x ◦φ
be an orientation reversing reparameterization of x. Suppose that
f : R2 → R is integrable. Prove that

∫
y
f ds =

∫
x
f ds.

Solution: Since φ is orientation reversing, |φ′(t)| = −φ′(t). Hence,
||y′(t)|| = −||x′(φ(t))||φ′(t). Thus,∫

y

f ds = −
∫ d

c

f(x(φ(t)))||x′(φ(t))||φ′(t) dt.

Substitute u = φ(t) and du = φ′(t)dt to get:∫
y

f ds = −
∫ a

b

f(x(u))||x′(u)|| du.

Reversing the limits of integration eliminates the negative sign and
so the result follows.

(14) Let x(t) = (t cos t, t sin t) for 0 ≤ t ≤ 2π. Let f(x, y) = y cosx.
Let F (x, y) = (−y, x). Find one-variable integrals representing∫
x
f ds and

∫
x
F · ds.

Solution: Notice that

x(t) = (t cos t, t sin t)
x′(t) = (cos t− t sin t, t cos t+ sin t)

||x′(t)|| =
√
(cos t− t sin t)2 + (t cos t+ sin t)2

Thus,∫
x

f ds =

∫ 2π

0

t sin t cos(t cos t)
√

(cos t− t sin t)2 + (t cos t+ sin t)2 dt.
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And,

∫
x
F · ds =

∫ 2π

0

(
−t sin t
t cos t

)
·
(
cos t− t sin t
sin t+ t cos t

)
dt.

=
∫ 2π

0
t2 dt

= 8π3/3.

(15) The gravitation vector field in R3 is F (x) = −x/||x||3. Find an
integral representing the amount of work done by gravity as an
object moves through the vector field F along the path x(t) =
(t cos t, t sin t, t) for 1 ≤ t ≤ 2π.

Solution: Notice that:

||x(t)|| = t
√
2

x′(t) = (cos t− t sin t, sin t+ t cos t, 1)

Plugging the path into the vector field we get:

F(x(t)) =
−1

(t
√
2)3

t cos tt sin t
t

 .

The work done by F along x is equal to
∫
x
F · ds. Thus, the work

done by gravity is equal to:

∫ 2π

1

−1
(t
√
2)3

t cos tt sin t
t

 ·
cos t− t sin t
sin t+ t cos t

1

 dt.

We can write this as follows, to avoid scaring Calc I students:∫ 2π

1

−1
(t
√
2)3

(
(t cos t)(cos t− t sin t) + (t sin t)(sin t+ t cos t) + t

)
dt.

(16) Let F(x, y) = (x,−2y).

(a) Sketch a portion of the vector field F .

(b) Sketch a flow line for the vector field starting at (1, 1).

(c) Find a parameterization for the flow line starting at (1, 1).
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Solution: Let φ(t) = (x(t), y(t)) be the flow line. Then we are
looking for x and y so that:

x′(t) = x(t)
y′(t) = −2y(t)
x(0) = 1
y(0) = 1

Using x(t) = et and y(t) = e−2t does the trick.

(d) The vector field F is a gradient field. Find the potential func-
tion.

Solution: f(x, y) = x2/2− y2.

(17) Let F (x, y) = (2xy, x2 + 1). Find a potential function for F .

Solution: f(x, y) = x2y + y.

(18) Explain why flow lines for an everywhere non-zero gradient field
never close up. Use this to prove that F(x, y) = (−y, x) is not a
gradient field.

Solution: Let F = ∇f be a continuous gradient field. As we travel
along a flow line, the value of f is strictly increasing and so we
cannot arrive back at the same point. The given vector field has
(cos t, sin t) for 0 ≤ t ≤ 2π as a flow line. This flow line closes up
and so F cannot be a gradient field.

(19) Let f(x, y) = yex. Find the gradient of f .

Solution: ∇f(x, y) = (yex, ex).

(20) Let F (x, y, 0) = (yex, xey
2
, 0). Find the divergence of F .

Solution: div f(x, y) = yex + 2yxey
2

(21) Let F (x, y, z) = (xyz, xey ln(z), x2 + y2 + z2). Find the curl of F .

(22) Find the curl of your answer to problem 16.

Solution:0

(23) Find the divergence of your answer to problem 18.

Solution: 0.

(24) Let F be a C1 vector field. State the integral definition of the scalar
curl of F at a point a and prove that it gives the same answer as the
derivative definition for vector fields of the form F = (M, 0).
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Solution: Let Cn be a rectangle around the point a so that as n →
∞ all the points on Cn converge to a. Orient Cn counterclockwise.
Let An be the area enclosed by Cn. Then the scalar curl of F is
defined to be

lim
n→∞

1

An

∫
Cn

F · ds.

To prove that it gives the same answer as the derivative definition:

Let Cn = [an, bn]× [cn, dn]. Then

1

An

∫
Cn

F · ds = 1

(bn − an)(dn − cn)

∫ bn

an

M(t, cn)−M(t, dn) dt

since F is perpendicular to the vertical sides of Cn and since we can
paramterize the sides of Cn by (t, cn) and (t, dn).

By the Mean Value Theorem for Integrals, there exists x0 ∈ [an, bn]
such that

M(x0, cn)−M(x0, dn) =
1

(bn − an)

∫ bn

an

M(t, cn)−M(t, dn) dt.

Thus,
1

(bn−an)(dn−cn)

∫ bn
an
M(t, cn)−M(t, dn) dt =

M(x0,cn)−M(x0,dn)
dn−cn =

−M(x0,dn)−M(x0,cn)
dn−cn .

By the Mean Value Theorem for derivatives, there exists y0 ∈ [cn, dn]
such that

∂M

∂y
(x0, y0) =

M(x0, dn)−M(x0, cn)

dn − cn
.

Consequently,
1

An

∫
Cn

F · ds = −∂M
∂y

(x0, y0).

As n → ∞, the point (x0, y0) which is inside Cn goes to a. Since
the partial derivatives of M ar continuous, we have

lim
n→∞

1

An

∫
Cn

F · ds = −∂M
∂y

(a).

which is what we were trying to prove.

(25) Suppose that F = ∇f is the gradient field of a C1 scalar field f on
R2. Let x : [a, b] → R2 be a C1 path. State and prove the funda-
mental theorem of calculus for conservative vector fields.
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Answer: The Fundamental Theorem of Calculus for Conservative
Vector Fields says that if F = ∇f is a conservative vector field,
with f a C1 vector field and if x : [a, b]→ Rn is a C1 path, then∫

x

F · ds = f(x(b))− f(x(a)).

To prove it, consider:
d

dt
f(x(t)) = Df(x(t))x′(t)

by the chain rule. Since Df is a row vector which is the transpose
of ∇f = F we can rewrite this as:

d

dt
f(x(t)) = F(x(t)) · x′(t).

Integrate both sides:∫ b

a

d

dt
f(x(t)) dt =

∫ b

a

F(x(t)) · x′(t) dt.

By the Fundamental Theorem of Calculus, the left side is equal to
f(x(b)) − f(x(a)) and the right side is equal to

∫
x
F · ds by the

definition of the line integral. Thus,

f(x(b))− f(x(a)) =
∫
x

F · ds.


