MA 262: Practice Exam 1 Solutions Name:

This practice exam is much longer than the actual exam.

(1) Let F(z,y) = (2%y, y*z, 3z — 2yx). Find the derivative of F.

Solution:

2y x?
DF(z,y)=| v 2y
3—2y —2z

(2) Let F(z,y) = (x —y,x + y) and let G(z,y) = (zcosy,xsiny).
Find the derivative of F' o (G using the chain rule.

Solution:

DF(z,y) = G _11>

_ (cosy —xsiny
DG(z,y) = (siny xcosy)

D(FoG)(z,y) = DF(G(x,y))DG(x,y)

(1 -1 cosy —xsiny
o\l 1 siny xcosy
_ [cosy—sIny —xsiny— TCcosy
~ \cosy+siny —xsiny+ xcosy

(3) Suppose that a rotating circle of radius 1 is travelling through the
plane, so that at time ¢ seconds the center of the circle is at the point
(t,sint). Let P be the point on the circle which is at (0, 1) at time
t = 0. If the circle makes 3 revolutions per second, what is the path
x(t) taken by the point P?

Solution: The rotation of the P relative to the center of the circle
(thatis, in T,(;)) can be described by the path (cos(67t+7/2), sin(6mt+
7/2)). Thus, x(t) = (cos(6nt + 7/2) + t,sin(67t + 7/2) + sint).

(4) A rotating circle of radius 1 follows a helical path in R? so that at

time ¢ the center of the circle is at (sint, cost,t). At each time ¢,
1
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the circle lies in the osculating plane. (That is, the circle lies in the
plane spanned by the unit tangent and the unit normal vectors.) Let
P be the point on the circle which is at (1,0) at time ¢ = 0. The
circle completes one rotation every 27 seconds. Find a formula x(¢)
for the path taken by the point P.

(5) A rotating circle of radius 1 follows a helical path in R? so that at
time ¢ the center of the circle is at (sint, cost,t). At each time ¢,
the circle lies in the osculating plane. (That is, the circle lies in the
plane spanned by the unit tangent and the unit normal vectors.) Let
P be the point on the circle which is at (1,0) at time ¢ = 0. The
circle completes one rotation every 27 seconds. Find a formula x(¢)
for the path taken by the point P. (Hint: Express the center of the
circle as a combination of the unit tangent and normal vectors.)

Solution: Relative to the center of the circle (that is, in T¢)) the
point P follows the path costT + sintN where T and N are the
unit tangent and unit normal vectors to c(t) = (sint,cost,t) re-
spectively. Those formulae are

cost
T(t) = \/Li —sint
1
—sint
N(t) = | —cost
0

c(t) = costT +sintN + c(t)

cost —sint sint
= &\/Zf —sint | +sint [ —cost | + | cost
1 0 t

(6) Explain what it means for curvature to be an intrinsic quantity.

Solution: The curvature of a path x(¢) at 5, depends only on the
curve itself at ¢y, not on the parameterization x.

(7) Prove that the curvature at any point of a circle of radius r is 1/r.
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Solution: A circle of radius r can be parameterized as x(t) =
(rcost,rsint) for 0 < ¢ < 27. We have:

x'(t) = (—rsint,rcost)
IX'@® = r
T = (—sint,cost)
T = (—cost,—sint)
=1
k(t) = [IT']I/]]x]

= 1/r

(8) Let x(t) = (cost,sint,t) for 1 <t < 2. Find T, N, and B (that is,
the moving frame) for x and also find « (the curvature).

Solution: We have:

x'(t) = (—sint,cost,t)
IX®1 = v2

T(t) = \/ii(— sint, cost, 1)

T(t) = \/ii( cost,—sint,0)

N(t) = (—cost,—sint,0)

B(t) = \%(smt —cost, 1)

Kk(t) 1/2

(9) Suppose thatx: [a, b] — R™is a C! path such that for all ¢, ||x(¢)|| =
5. Prove that at each ¢, x(¢) and x/(¢) are perpendicular.

Solution: Since 5 = x(t) - x(t), by the product rule, we have 0 =
2x - x/, implying that x and x’ are perpendicular.

(10) A particle is following the path x(t) = (¢,t*t%) for 1 < ¢ < 5.
Find an integral representing the distance travelled by the particle
after ¢ seconds.

Solution: The distance travelled after ¢ seconds is

f1 X' (7)l] dr
= [[VI+42+9t8dr.

(11) Let x(t) = (¢, 3t?) for t > 1. Reparameterize x by arc length.

Solution: We compute,

¢ ¢
= / V42 43672 dr = / 2rvV10dr. = V10(t* — 1).
1 1



Then,
) =/t/V10+ 1
Consequently,

y(t) =xo0s'(t) = (t/V10+1,3t/V10 + 3)
is the reparameterization of x by arclength.

(12) Suppose that x(t) is a path in R” such that x(0) = aand x(1) = b
(that is, x is a path joining a to b.) Find a path which has the same
image as x but which joins b to a.

Solution: y: [—1,0] — R” defined by y(t) = x(—t) will do the
trick since y(0) = aand y(—1) = b.

(13) Letx: [a,b] — R" be a path with x'(t) # 0 forall t. Lety = x0 ¢
be an orientation reversing reparameterization of x. Suppose that
f: R? — R is integrable. Prove that fy fds= [ fds.

Solution: Since ¢ is orientation reversing, |¢'(t)| = —¢'(t). Hence,

Iy’ (O] = =X (¢())[[¢'(1). Thus,

/f@— /f M (6(6))]16 (1) dt

Substitute u = ¢(t) and du = ¢'(t)dt to get:

/f@— /f DI ()] du

Reversing the limits of integration eliminates the negative sign and
so the result follows.

(14) Let x(t) = (tcost,tsint) for 0 < ¢t < 27. Let f(z,y) = ycosz.
Let F(z,y) = (—y,z). Find one-variable integrals representing
[ fdsand [ F-ds.

Solution: Notice that

x(t) = (tcost,tsint)
x/'(t) = (cost —tsint,tcost+ sint)
Ix'(1)]] = +/(cost—tsint)?+ (tcost+ sint)?

Thus,

2m
/fds = / tsint cos(t cost)y/(cost — tsint)? + (tcost + sint)? dt.
X 0



And,
on [ —tsint cost —tsint
fo rds = fo ( tcost ) ' <sint+tcost) dt.
= [7edt
= 87m3/3.
(15) The gravitation vector field in R?® is F(x) = —x/||x|[>. Find an

integral representing the amount of work done by gravity as an
object moves through the vector field F' along the path x(t) =
(tcost,tsint, t) for 1 <t < 2.

Solution: Notice that:

= /2

|
x'(t) = (cost—tsint,sint+tcost,1)

Plugging the path into the vector field we get:

tcost
tsint

(tV2)? ¢

F(x(t)) =

The work done by F along x is equal to fx F - ds. Thus, the work
done by gravity is equal to:

tcost cost —tsint
tsint | - | sint +tcost | dt.

2T
/1 (tv2)3 \ 4 1
We can write this as follows, to avoid scaring Calc I students:

21 -1 (
———( (tcost)(cost — tsint) + (tsint)(sint + tcost) + t) dt.
/1 (tv2)?
(16) Let F(z,y) = (z, —2y).

(a) Sketch a portion of the vector field F'.

(b) Sketch a flow line for the vector field starting at (1, 1).

(c) Find a parameterization for the flow line starting at (1, 1).



6

Solution: Let ¢(¢) = (z(t),y(t)) be the flow line. Then we are
looking for z and y so that:

) = x(t)

) = —2y(t)

) = 1

) = 1

Using z(t) = €' and y(t) = e~ does the trick.

(d) The vector field F' is a gradient field. Find the potential func-
tion.

Solution: f(z,y) = 2%/2 — 3.
(17) Let F(x,y) = (2zy, 2* + 1). Find a potential function for F'.
Solution: f(z,y) = 2%y + .

(18) Explain why flow lines for an everywhere non-zero gradient field
never close up. Use this to prove that F(x,y) = (—y,x) is not a
gradient field.

Solution: Let F = V f be a continuous gradient field. As we travel
along a flow line, the value of f is strictly increasing and so we
cannot arrive back at the same point. The given vector field has
(cost,sint) for 0 < ¢ < 2 as a flow line. This flow line closes up
and so F cannot be a gradient field.

(19) Let f(z,y) = ye®. Find the gradient of f.
Solution: V f(z,y) = (ye”, e®).
(20) Let F(x,1,0) = (ye®,ze¥’,0). Find the divergence of F'.
Solution: div f(z,y) = ye” + 2yxeY’
(21) Let F(z,y,2) = (zyz, re¥ In(z), 2* + y* + 2?). Find the curl of F.
(22) Find the curl of your answer to problem 16.
Solution:0
(23) Find the divergence of your answer to problem 18.
Solution: 0.

(24) Let F be a C! vector field. State the integral definition of the scalar
curl of F at a point a and prove that it gives the same answer as the
derivative definition for vector fields of the form F = (M, 0).
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Solution: Let C,, be a rectangle around the point a so that as n —
oo all the points on ), converge to a. Orient C,, counterclockwise.
Let A, be the area enclosed by C,,. Then the scalar curl of F is

defined to be .
lim — / F - ds.
n—oo An Chn

To prove that it gives the same answer as the derivative definition:
Let C,, = [ay,, by] X [¢n, d,]. Then

1 1 bn

— F.ds =

An /Cn > (bn — an)(dn — cn) Ja,

since F' is perpendicular to the vertical sides of C), and since we can
paramterize the sides of C,, by (¢, ¢,,) and (¢, d,,).

M(t,e,) — M(t,d,) dt

By the Mean Value Theorem for Integrals, there exists zg € [a,, b,]
such that

1 bn

M(J?O,Cn) — M(l’o,dn) = m

M(t,e,) — M(t,d,) dt.

Thus,
bn,
(bnfan)l(dnfcn) fan M<t’ Cn) - M(t, dn) dt

M(zo,cn)—M (z0,dn)
dn—cn,
_ M(z0,dn)—M (x0,cn)

dn—cn

By the Mean Value Theorem for derivatives, there exists yo € [c,, d,,]

such that
oM _ M(xg,dy,) — M(x0,c,)
Consequently,
1 oM
— F.-ds=— )

As n — oo, the point (¢, yo) which is inside C), goes to a. Since
the partial derivatives of M ar continuous, we have

lim i/ F.ds= —8—M(a).
c 0

n—oo n y
which is what we were trying to prove.

(25) Suppose that F = V f is the gradient field of a C* scalar field f on
R2 Let x: [a,b] — R? be a C! path. State and prove the funda-
mental theorem of calculus for conservative vector fields.
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Answer: The Fundamental Theorem of Calculus for Conservative
Vector Fields says that if F = V f is a conservative vector field,
with f a C! vector field and if x: [a,b] — R" is a C! path, then

/F-%szwﬁ—f&w»

To prove it, consider:

d !
—[(x(1)) = D (x(0)x'(¢)

by the chain rule. Since D f is a row vector which is the transpose
of Vf = F we can rewrite this as:

d /
5/ (x(®) = F(x(t)) - x(¢).

Integrate both sides:
b d b
/a af(x(t))dt:/a F(x(t)) - X'(t) dt.

By the Fundamental Theorem of Calculus, the left side is equal to
f(x(b)) — f(x(a)) and the right side is equal to [ F - ds by the
definition of the line integral. Thus,

f@@%ﬁ@@»=/Fds

X



