Name: $\qquad$

These questions cover only the material since Exam 2. The first few problems are repeated from the previous practice exam.
(1) Find a parameterization of the surface formed by the graph of $z=$ $x^{2}-y^{2}$ with $(x, y)$ in the triangle in the $x y$-plane formed by the $x$ axis, the $y$-axis, and the line $y=-x+1$.

Solution: How about:

$$
\mathbf{X}(s, t)=\left(\begin{array}{c}
s \\
t \\
s^{2}-t^{2}
\end{array}\right)
$$

with $0 \leq s \leq 1$ and $0 \leq t \leq-s+1$ ?
(2) Is the surface in the previous problem a smooth surface? If no, at what points is it not smooth?

Solution: The answer depends (somewhat) on your parameterization. The answer here is based on the parameterization above.

You can calculate that

$$
\begin{aligned}
\mathbf{T}_{s} & =(1,0,2 s) \\
\mathbf{T}_{t} & =(0,1,-2 t) \\
\mathbf{N} & =(-2 s, 2 t, 1)
\end{aligned}
$$

Since $\mathbf{N}$ is never $\mathbf{0}$, and since $\mathbf{X}$ is obviously $\mathbf{C}^{1}, \mathbf{X}$ is a smooth surface.

Solution: How about

$$
\mathbf{X}(s, t)=\left(\begin{array}{c}
\cos s(\cos t+5) \\
2 \sin t \\
\sin s(\cos t+5)
\end{array}\right)
$$

for $0 \leq t \leq 2 \pi$ and $0 \leq s \leq 2 \pi$ ?
(3) Consider the surface

$$
\mathbf{X}(s, t)=\left(\begin{array}{c}
2 \sin 3 t+t \\
\cos 2 s \\
t^{2}+s^{2}
\end{array}\right), 0 \leq t \leq \pi / 4, \quad 0 \leq s \leq \pi
$$

Find the tangent and normal vectors to $\mathbf{X}$ at the point $(\pi / 6, \pi / 6)$. Is the surface smooth?

## Solution:

We have

$$
\begin{aligned}
& \mathbf{T}_{s}=(0,-2 \sin 2 s, 2 s) \\
& \mathbf{T}_{t}=(6 \cos (3 t)+1,0,2 t) \\
& \mathbf{N}=(-4 t \sin 2 s, 2 s(6 \cos 3 t+1), 2 \sin 2 s(6 \cos 3 t+1)
\end{aligned}
$$

$\operatorname{Plug}(\pi / 6, \pi / 6)$ into the above equations to get:

$$
\begin{aligned}
\mathbf{T}_{s} & =(0,-\sqrt{3}, \pi / 3) \\
\mathbf{T}_{t} & =(1,0, \pi / 3) \\
\mathbf{N} & =(-\pi \sqrt{3} / 3, \pi / 3, \sqrt{3})
\end{aligned}
$$

Since $\mathbf{N}(\pi / 6, \pi / 6) \neq \mathbf{0}$, the surface is smooth at that point.
(4) Let $S$ be the disc of radius 1 centered at $(1,0,0)$ in $\mathbb{R}^{3}$ which is parallel to the $y z$-plane. Orient $S$ with normal vector pointing in the direction of the postive $x$-axis. Use the definition of surface integral to calculate the flux of $\mathbf{F}(x, y, z)=(-x y, y z, x z)$ through $S$.
Solution: Parameterize $S$ as:

$$
\mathbf{X}(s, t)=\left(\begin{array}{l}
1 \\
s \\
t
\end{array}\right)
$$

with $(s, t)$ in the region $D$ defined by $0 \leq s^{2}+t^{2} \leq 1$. It is easy to calculate $\mathbf{N}=(1,0,0)$. Then,

$$
\mathbf{F} \cdot \mathbf{N}(x, y, z)=-x y .
$$

Thus, by the definition of surface integral, the flux of $\mathbf{F}$ through $S$ is

$$
\iint_{D} \mathbf{F} \cdot \mathbf{N}(\mathbf{X}(s, t)) d A=\iint_{D}-s d s d t .
$$

Change to polar coordinates by setting $s=r \cos \theta$ and $t=r \sin \theta$. Then the integral above is equal to (by the change of coordinates theorem):

$$
\int_{0}^{1} \int_{0}^{2 \pi}-r^{2} \cos \theta d \theta d r
$$

Since $\int_{0}^{2 \pi} \cos \theta d \theta=0$, the flux equals 0 .
(5) Use the same surface $S$ and $\mathbf{F}$ as in the previous problem, but now use Stoke's theorem to calculate the flux of the curl from the previous problem.
Solution: By Stoke's theorem,

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{\partial S} \mathbf{F} d \mathbf{s}
$$

Parameterize $\partial S$ as:

$$
\mathbf{x}(t)=\left(\begin{array}{c}
1 \\
\cos t \\
\sin t
\end{array}\right)
$$

with $0 \leq t \leq 2 \pi$.
Notice that $\mathbf{x}$ gives $\partial S$ the orientation induced by the orientation on $S$. Then,

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{x})(t) \cdot \mathbf{x}^{\prime}(t) d t
$$

Calculations show that this equals

$$
\begin{aligned}
\int_{0}^{2 \pi}-\cos t \sin ^{2} t+\sin t \cos t d t & =\int_{0}^{2 \pi}-\cos t \sin ^{2} t d t+\int_{0}^{2 \pi} \sin t \cos t d t \\
& =0 .
\end{aligned}
$$

(6) Give precise statements of Stokes' Theorem and the Divergence Theorem.

Stokes' Theorem: Let $S \subset \mathbb{R}^{3}$ be a compact oriented piecewise $C^{1}$ surface such that $\partial S$ is piecewise $\mathrm{C}^{1}$. Give $\partial S$ the orientation induced by $S$. Suppose that $\mathbf{F}$ is a $\mathrm{C}^{1}$ vector field defined on $S$. Then

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{\partial S} \mathbf{F} \cdot d \mathbf{s}
$$

Divergence Theorem Suppose that $V \subset \mathbb{R}^{3}$ is a compact 3-dimensional region with piecewise $\mathrm{C}^{1}$ boundary. Give $\partial V$ the orientation with outward pointing normal. If $\mathbf{F}$ is a $\mathrm{C}^{1}$ vector field defined throughout $V$, then

$$
\iiint_{V} \operatorname{div} \mathbf{F} d V=\iint_{\partial V} \mathbf{F} \cdot d \mathbf{S} .
$$

(7) State and prove Gauss' law for gravity.

Solution: See the course notes.
(8) Use Gauss’ Law for gravity and symmetry considerations to prove the shell theorem.

Solution: See the course notes.
(9) Suppose that a vector field $\mathbf{F}$ defined on $\mathbb{R}^{3}-\{\boldsymbol{0}\}$ has a flux of 21 through a sphere of radius 2 (oriented outward). If the divergence of $\mathbf{F}$ is a constant -1 , what is the flux of $\mathbf{F}$ through a sphere of radius 4 (oriented outward)?

Solution: Let $S_{2}$ be the sphere of radius 2 and let $S_{4}$ be the sphere of radius 4 . Let $V$ be the region between them. Notice that $\mathbf{F}$ is $\mathrm{C}^{1}$ throughout $V$. If we give $\partial V$ the outward pointing orientation, then $S_{2}$ is oriented "the wrong way". Thus, by the divergence theorem:

$$
-\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}+\iint_{S_{4}} \mathbf{F} \cdot d \mathbf{S}=\iint_{\partial V} \mathbf{F} \cdot d \mathbf{S}=\iiint_{V} \operatorname{div} \mathbf{F} d V
$$

Since $\operatorname{div} \mathbf{F}=-1$, the last integral is just the negative of the volume of $V$. The volume of $V$ is $\frac{4}{3} \pi(4)^{3}-\frac{4}{3} \pi(2)^{3}=64 \pi$. Thus,

$$
-\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}+\iint_{S_{4}} \mathbf{F} \cdot d \mathbf{S}=-64
$$

Since the flux through $S_{2}$ is 21 , we have

$$
\iint_{S_{4}} \mathbf{F} \cdot d \mathbf{S}=-64+21=-43 .
$$

(10) Suppose that $\mathbf{F}$ is a $C^{1}$ vector field that is everywhere tangent to the unit sphere in $\mathbb{R}^{3}$. Explain why the flux of $\mathbf{F}$ through the sphere must be zero. If $\mathbf{F}$ is also $C^{1}$ everywhere inside the sphere, what can you conclude about the divergence of $\mathbf{F}$ inside the sphere?
Solution: Let $\mathbf{n}$ be the unit normal to the unit sphere $S$. We have:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

This equals 0 , since $\mathbf{F}$ and $\mathbf{n}$ are always perpendicular on the sphere.
By the divergence theorem, if $\mathbf{F}$ is $\mathrm{C}^{1}$ inside the sphere, then the integral of the divergence of $\mathbf{F}$ over the unit ball is equal to the flux of $\mathbf{F}$ across $S$, which we just calculated to be zero. Thus, integrating the divergence of $\mathbf{F}$ over the unit ball gives zero.
(11) Suppose that $\mathbf{F}$ is a $\mathbf{C}^{1}$ vector field and that $S$ is a compact surface without boundary. If the circulation of $\mathbf{F}$ around $S$ is non-zero, what can you conclude about $S$ ?
Solution: $S$ must be non-orientable. If it were orientable we could apply Stokes' theorem to conclude:

$$
0 \neq \iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{\partial S} \mathbf{F} \cdot d \mathbf{s}
$$

Since $\partial S=\varnothing$, this last integral must be zero.
(12) Suppose that two surfaces $S_{1}$ and $S_{2}$ have the same oriented boundary and that they are disjoint except along their boundaries. Suppose that $\mathbf{F}$ is a $\mathbf{C}^{1}$ vector field defined on the region bounded by the union of $S_{1}$ and $S_{2}$. Explain why the circulation of $\mathbf{F}$ is the same on $S_{1}$ and $S_{2}$. If the vector field is incompressible, explain why the flux through $S_{1}$ is the same as the flux through $S_{2}$.
Solution: By Stokes theorem, the circulation of $\mathbf{F}$ on each $S_{i}$ is equal to the circulation of $\mathbf{F}$ around the boundary. Since they have the same oriented boundary, they must have the same circulation.

For $\mathbf{F}$ to be incompressible, means that $\operatorname{div} \mathbf{F}=0$. Let $S$ be the union of $S_{1}$ and $S_{2}$ without outward normal. Let $V$ be the region bounded by $S$. One of $S_{1}$ or $S_{2}$ has the wrong orientation (since they induce the same orienation on their common boundary). Thus by the divergence theorem:

$$
0=\iiint_{V} \operatorname{div} \mathbf{F} d V=\iint_{\partial V} \mathbf{F} \cdot d \mathbf{S}= \pm \iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S} \mp \iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S} .
$$

Thus, the fluxes are the same.

