MA 302: Practice Exam 2 Name:

(1) Give an example of a vector field F having curl F = 0, but where F
is not a gradient field.

(2) Know the formal definitions of the following terms or the complete
precise statements of the following theorems:

(a) Green’s theorem

(b) planar divergence theorem

(c) Stokes’ theorem

(d) Poincaré’s theorem

(e) parameterized surface

(f) orientable surface

(g) one-sided surface
(3) Give an example of a one-sided surface in R3.
(4) Give an example of an orientable surface in R3.
(5) Be able to do the following:

(a) Suppose that D C IR? is the union of two “nice” regions Dy and
D, along an edge C in their boundaries. Suppose that F is a
C! vector field defined on the union D = D; UD;. Prove that
f&DF'dS = fBD] F'ds+faD2F'dS.

(b) Give an outline of the proof of Green’s theorem.

(c) Suppose that X C R? is a simply connected open subset and
that F: X — R? has curl F = 0. Prove that if C is a simple
closed curve in X then [-F-ds = 0. Use this to prove that F is
conservative.

(6) Let D C R? be the region bounded by the graphs of the equations
y=x> and y = x and with x > 0. Suppose that F(x,y) = (xy+y,y*x).

(a) Is D atype I, 11, or III region or none of the above?
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Solution: It is a type III region, since it can be expressed as
both
{(x,y)):0<x<1,x*<y<x} and
{(x,y):0<y<1,y<x< ¥y}

(b) Orient dD so that D is always on the left. Calculate [ F-ds
oD
directly.

Solution: Parameterize the graph of y =xas (1 —¢,1 —¢) and
the graph of y = x> as (¢,#>) both with 0 <t < 1. Notice that
this gives dD; the “correct” orientation for Green’s theorem..
Let Cy and C, be the pieces of dD; corresponding to y = x> and
y = x respectively. Then:

Jop¥-ds =

L) (e -
Jo (=12 =(1=0)= (1= + (t*+) +3°dt =

1
(1—t)3/3—|—(1—t)2/2+(1—t)4/4—l—t5/5+t4/4+3t10/10‘0 -
1/5+1/4+3/10-1/3—1/2—1/4 =

13

(c) Calculate [[curl F-kdA directly.
D

Solution:
Jo [ScurlF-kdA =
folf;gyz—x—ldydx
Jox? 3= —x—x0/34x*+3dx =
1/12—1/3—-1/2—1/30+1/5+1/4 =
~1/3

(d) Whatis the relevance of Green’s theorem to the preceding prob-
lems?

Solution: Since F is defined on D and since dD is piece-
wise C!, Green’s theorem asserts the previous two calculations
should be equal. Which they are.

(e) Is the vector field F conservative?
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Solution: No. If it were conservative the integral [;,F -ds
would be 0. (There are other possible reasons.)

(7) What is the flux of the vector field F(x,y) = (—y?x,x?y) across the
circle of radius 2 centered at the origin? Just set up an appropriate
single-variable integral. You do not need to solve it.

Solution: Let x(¢) = (2cost,2sint) for 0 < ¢ < 2z. The unit nor-
mal pointing outside the region bounded by the circle is n(z) =
(cost,sin(t)). Consequently, the flux is

27 2
—8&sin“zcost cost
/XF-nds—/O ( 8cos’tsint ) . (sint) (2)dt.
This is equal to:

21
2/ —SCosztsinzH—8sin2tcosztdt =0.
0

(8) What is the circulation of the vector field F(x,y) = (—y?x, x?y) around
the circle of radius 2 centered at the origin? Just set up an appropri-
ate single-variable integral. You do not need to solve it.

Solution: We use the same notation as in the previous problem. The
circulation of the vector field is:

2T [ Q in2 P
/F-ds:/ 851[12 tc.sost ' 2sint r
X 0 8cos“tsint 2cost
This is equal to:

2n
/ 16sin> cost + 16cos’ tsint dt.
0

(9) Recall that if two particles, each with charge +1 are at points p and
q respectively, the electric force exerted by the particle at p on the
particle at q is W (q—p).

A wire C is bent into the shape of a circle of radius 1 centered at the
origin in R?. It is given a charge of +1 and so generates an electric
field F. How much work is done in moving a particle with charge
+1 from (1/2,0) to (0,0)? Does it matter what path is taken? Why
not? (You may leave your answer in integral form.)

Solution: The scalar field g(y) = —L is a potential function for

: ISl
G(Y) = [y (Y =)



(10)

(11)
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By the principle of superposition, we can obtain a potential function
for F by calculation:

—1
et :/c¢<x—a>2+<y—b>2ds

~1

. a2+b2- . . . . .
a single particle at the origin. Choosing the usual parameterization
for C and letting b = 0, we obtain:

since

is a potential function for the electric field generated by

0 27 1 d
a,0) = — t
f(2,0) 0 V1—2acost+a?

Since we have a potential function we can simply evaluate f on
the endpoints of the path (the path not mattering the slightest) and
subtract in order to find the work. So for (a) we obtain:

f(0,0)—f(1/2,0) =

2n 1
—(2%—/ dt)
0 y/l—cost+1/4

Suppose that C; and C, are C! paths bounding a compact region A
in R? . Suppose that F is a C! vector field defined on A such that the
scalar curl of F is a constant 9. State and explain the relationship be-
tween fc, F-ds and fcz F - ds if both are oriented counter-clockwise.

Solution: Since F is C! on the compact region A, we may apply
Green’s theorem to find:

9Area(A) = // scalar curlF dA = /F«ds.
D dA

One of C or (3 is oriented so that A is on the right. The other one
is oriented so that A is on the left. Hence,

/F-ds:i/ F-ds+ [ F-ds.
A “ ©

Since this equals 9Area(A), the two line integrals differ by 9Area(A).

Suppose that C; and C, are C! simple closed curves bounding a
region A in R? so that A is on the left of both C; and C;. Suppose
that F is a C! vector field defined on A such that the divergence of F
is a constant 9. State and explain the relationship between the flux
of F through C; and the flux of F through C;.

Solution: Since F is C! on the compact region A, we can use the
planar divergence theorem. The flux through the boundary of A is
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equal to & [ F-ds¥ |, F-ds. The planar divergence theorem says
this is equal to [/ divFdA = 9Area(A). Hence, the flux through C)

D
and the flux through C, differ by 9 times the area of A.

(12) (Challenge!) Suppose that D is the region obtained from R? by
removing 2 points p; and p,. Suppose that F is a C! vector field
defined on D with curl constantly zero.

(a) Are there simple closed curves Cy,C3,... in D such that the
sequence < fCiF-ds> diverges to infinity?

Solution: By Green’s theorem any two disjoint curves oriented
in the same direction and bounding a region A not containing
either p; or pp must produce the same value when F is inte-
grated along them. (Be sure you understand this. HW 7 had
several problems on this idea.) A simple closed curve in R?
that does not pass through either p; or py has either 0, 1, or
2 of the points in the compact region with boundary the curve.
Thus, if C is a simple closed curve the integral | F -ds can take
one of only four possible values. (Do you see why?)

(b) What if we only require Cy,C5,... to be closed (and not sim-
ple)?

Solution: Suppose that p; = (0,0) and that p, = (8,0) (or any-
thing else far away from p;. Define C,(t) = (cost,sint) for
t €10,27n]. Let F(x,y) = )#yZ _xy ) A calculation shows
that anF -ds = 2zmn. This sequence diverges to infinity as
n— oo,

(c) What if C1,(,,... are simple closed curves, but the scalar curl
of F is always 1 (instead of 0)?

Solution: Let M be the maximum of ||p;|| and ||p2||. Let G;
be a circle of radius M + i oriented counterclockwise. The area
between C; and C; is

A(M+i+1)% —n(M+i)> =rx(2M +2i+1).
By problem (10), we have

/ F-ds—/F-ds:n(2M+2i+1)
Cit1 G

Thus, the sequence < fCiF-ds> diverges to infinity.
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(13) Is the vector field F(x,y,z) conservative on its do-

_ 1
T
<

main? Explain.

Solution: An easy calculation shows that the curl of F is the zero
vector. Since R? — 0 is simply connected, by Poincaré’s theorem, F
1S conservative.
-y
(14) Ts the vector field F(x,y,z) = )ﬁyz X | conservative on its do-
main?

Solution: No. It is easy to see that F has a closed flow line tracing
out the unit circle in the xy plane.

(15) Find a single variable integral representing the area enclosed by the
path ¢ (7) = (2cos(2¢),3sin(3t)) for —n/3 <t < /3.

Solution: We note that the orientation of the path ¢ has the bounded
region D always on the left. Hence by Green’s theorem and the fact

that curl (O) =1:
X

_m/3 0 . —4sin 2t
ffDldA - Lﬂ/3 <20052t> (9cos3t>dt

= ffy/r% 18cos(2t) cos(3t)dt.

(16) Leto: [1,2] — R?be the path o'(t) = (¢! !, sin(7/1)). Let F(x,y) =
(2xcosy, —x?siny). Compute [, F-ds.

Hint: Show and then use the fact that the vector field is conserva-
tive.

Solution: It is easy to see that f(x,y) = x>cosy is a potential func-

tion for F. The requested integral is then equal to f(c(2)) — f(o(1)).
You could also choose a nicer path joining the endpoints of ¢ and
integrate over that instead.

(17) Find a parameterization of the surface formed by the graph of z =
x? —y* with (x,y) in the triangle in the xy-plane formed by the x-
axis, the y-axis, and the line y = —x+ 1.



Solution: How about:

N

X(s,t) = t
272

with0<s<land0<r<—s+1?

(18) Is the surface in the previous problem a smooth surface? If no, at
what points is it not smooth?

Solution: The answer depends (somewhat) on your parameteriza-
tion. The answer here is based on the parameterization above.

You can calculate that
T, (1,0,2s)
T; (0,1,—2¢)
N = (-2s,21,1)

Since N is never 0, and since X is obviously C!, X is a smooth
surface.

(19) Find a parameterization of the surface formed by rotating the curve
cost+35

. with 0 <¢ <27 around the y-axis.
2sint

Solution: How about

coss(cost+5)
X(s,t) = 2sint
sins(cosz +5)

for0<r<2mand 0 <s <2m?
(20) Consider the surface

2sin3t 4t
X(s,t) = cos2s , 0<tr<m/4, 0<s<m
12452
Find the tangent and normal vectors to X at the point (7/6,7/6). Is
the surface smooth?

Solution:

We have

T, = (0,—2sin2s,2s)

T, = (6cos(3r)+1,0,21)

N = (—4rsin2s,2s(6cos3r+1),2sin2s(6cos3r+ 1)



Plug (7/6,7/6) into the above equations to get:

T, = (0,—V3,7/3)
T, = (17077’:/3)
N = (—ﬁ\/§/3,7f/3,\/§)

Since N(7/6,7/6) # 0, the surface is smooth at that point.

(21) Let S be the disc of radius 1 centered at (1,0,0) in R> which is
parallel to the yz-plane. Orient S with normal vector pointing in the
direction of the postive x-axis. Use the definition of surface integral
to calculate the flux of F(x,y,z) = (—xy, yz,xz) through S.

Solution: Parameterize S as:

with (s,¢) in the region D defined by 0 < 52 +¢2 < 1. It is easy to
calculate N = (1,0,0). Then,

F ‘N(X,y,Z) = Xy

Thus, by the definition of surface integral, the flux of F through S is

//DF-N(X(S,I))dA://D—sdsdt.

Change to polar coordinates by setting s = rcos 6 and ¢t = rsin .
Then the integral above is equal to (by the change of coordinates

theorem):
1 /M2r
/ / —2cos0d0dr
0 Jo

Since fozn cos 8dO = 0, the flux equals 0.

(22) Use the same surface S and F as in the previous problem, but now
use Stoke’s theorem to calculate the flux of the curl from the previ-
ous problem.

Solution: By Stoke’s theorem,

//curlF-dS: Fds.
S aS



Parameterize 9SS as:
1
x(t) = | cost
sint
with 0 <r <2m.

Notice that x gives dS the orientation induced by the orientation on
S. Then,

/F-ds: OZEF(X)(Z‘)-X/(I)dt.

Calculations show that this equals

5T —costsin’s +sintcostdt = [7T —costsin’tdt + [77 sint cost dr

= 0.



