\qquad
(1) Give an example of a vector field \mathbf{F} having $\operatorname{curl} \mathbf{F}=\mathbf{0}$, but where \mathbf{F} is not a gradient field.
(2) Know the formal definitions of the following terms or the complete precise statements of the following theorems:
(a) Green's theorem
(b) planar divergence theorem
(c) Stokes' theorem
(d) Poincaré's theorem
(e) parameterized surface
(f) orientable surface
(g) one-sided surface
(3) Give an example of a one-sided surface in \mathbb{R}^{3}.
(4) Give an example of an orientable surface in \mathbb{R}^{3}.
(5) Be able to do the following:
(a) Suppose that $D \subset \mathbb{R}^{2}$ is the union of two "nice" regions D_{1} and D_{2} along an edge C in their boundaries. Suppose that \mathbf{F} is a C^{1} vector field defined on the union $D=D_{1} \cup D_{2}$. Prove that $\int_{\partial D} \mathbf{F} \cdot d \mathbf{s}=\int_{\partial D_{1}} \mathbf{F} \cdot d \mathbf{s}+\int_{\partial D_{2}} \mathbf{F} \cdot d \mathbf{s}$.
(b) Give an outline of the proof of Green's theorem.
(c) Suppose that $X \subset \mathbb{R}^{2}$ is a simply connected open subset and that $\mathbf{F}: X \rightarrow \mathbb{R}^{2}$ has $\operatorname{curl} \mathbf{F}=\mathbf{0}$. Prove that if C is a simple closed curve in X then $\int_{C} \mathbf{F} \cdot d \mathbf{s}=0$. Use this to prove that \mathbf{F} is conservative.
(6) Let $D \subset \mathbb{R}^{2}$ be the region bounded by the graphs of the equations $y=x^{3}$ and $y=x$ and with $x \geq 0$. Suppose that $\mathbf{F}(x, y)=\left(x y+y, y^{2} x\right)$.
(a) Is D a type I, II, or III region or none of the above?
(b) Orient ∂D so that D is always on the left. Calculate $\int_{\partial D} \mathbf{F} \cdot d \mathbf{s}$ directly.
(c) Calculate $\iint_{D} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} d A$ directly.
(d) What is the relevance of Green's theorem to the preceding problems?
(e) Is the vector field \mathbf{F} conservative?
(7) What is the flux of the vector field $\mathbf{F}(x, y)=\left(-y^{2} x, x^{2} y\right)$ across the circle of radius 2 centered at the origin? Just set up an appropriate single-variable integral. You do not need to solve it.
(8) What is the circulation of the vector field $\mathbf{F}(x, y)=\left(-y^{2} x, x^{2} y\right)$ around the circle of radius 2 centered at the origin? Just set up an appropriate single-variable integral. You do not need to solve it.
(9) Recall that if two particles, each with charge +1 are at points \mathbf{p} and \mathbf{q} respectively, the electric force exerted by the particle at \mathbf{p} on the particle at \mathbf{q} is $\frac{1}{\|\mathbf{p}-\mathbf{q}\|^{3}}(\mathbf{q}-\mathbf{p})$.
A wire C is bent into the shape of a circle of radius 1 centered at the origin in \mathbb{R}^{2}. It is given a charge of +1 and so generates an electric field \mathbf{F}. How much work is done in moving a particle with charge +1 from $(1 / 2,0)$ to $(0,0)$? Does it matter what path is taken? Why not? (You may leave your answer in integral form.)
(10) Suppose that C_{1} and C_{2} are C^{1} paths bounding a compact region A in \mathbb{R}^{2}. Suppose that \mathbf{F} is a \mathbf{C}^{1} vector field defined on A such that the scalar curl of \mathbf{F} is a constant 9 . State and explain the relationship between $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}$ and $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}$ if both are oriented counter-clockwise.
(11) Suppose that C_{1} and C_{2} are C^{1} simple closed curves bounding a region A in \mathbb{R}^{2}. Assume that both C_{1} and C_{2} are oriented counterclockwise. Suppose that \mathbf{F} is a C^{1} vector field defined on A such that the divergence of \mathbf{F} is a constant 9 . State and explain the relationship between the flux of \mathbf{F} through C_{1} and the flux of \mathbf{F} through C_{2}.
(12) (Challenge!) Suppose that D is the region obtained from \mathbb{R}^{2} by removing 2 points \mathbf{p}_{1} and \mathbf{p}_{2}. Suppose that \mathbf{F} is a C^{1} vector field defined on D with curl constantly zero.
(a) Are there simple closed curves C_{1}, C_{2}, \ldots in D such that the sequence $\left(\int_{C_{i}} \mathbf{F} \cdot d \mathbf{s}\right)$ diverges to infinity?
(b) What if we only require C_{1}, C_{2}, \ldots to be closed (and not simple)?
(c) What if C_{1}, C_{2}, \ldots are simple closed curves, but the scalar curl of \mathbf{F} is always 1 (instead of 0)?
(13) Is the vector field $\mathbf{F}(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ conservative on its domain? Explain.
(14) Is the vector field $\mathbf{F}(x, y, z)=\frac{1}{x^{2}+y^{2}}\left(\begin{array}{c}-y \\ x \\ 0\end{array}\right)$ conservative on its domain?
(15) Find a single variable integral representing the area enclosed by the path $\phi(t)=(2 \cos (2 t), 3 \sin (3 t))$ for $-\pi / 3 \leq t \leq \pi / 3$.
(16) Let $\sigma:[1,2] \rightarrow \mathbb{R}^{2}$ be the path $\sigma(t)=\left(e^{t-1}, \sin (\pi / t)\right)$. Let $\mathbf{F}(x, y)=$ $\left(2 x \cos y,-x^{2} \sin y\right)$. Compute $\int_{\sigma} \mathbf{F} \cdot d \mathbf{s}$.
Hint: Show and then use the fact that the vector field is conservative.
(17) Find a parameterization of the surface formed by the graph of $z=$ $x^{2}-y^{2}$ with (x, y) in the triangle in the $x y$-plane formed by the x axis, the y-axis, and the line $y=-x+1$.
(18) Is the surface in the previous problem a smooth surface? If no, at what points is it not smooth?
(19) Find a parameterization of the surface formed by rotating the curve $\binom{\cos t+5}{2 \sin t}$ with $0 \leq t \leq 2 \pi$ around the y-axis.
(20) Consider the surface

$$
\mathbf{X}(s, t)=\left(\begin{array}{c}
2 \sin 3 t+t \\
\cos 2 s \\
t^{2}+s^{2}
\end{array}\right), 0 \leq t \leq \pi / 4, \quad 0 \leq s \leq \pi
$$

Find the tangent and normal vectors to \mathbf{X} at the point $(\pi / 6, \pi / 6)$. Is the surface smooth?
(21) Let S be the disc of radius 1 centered at $(1,0,0)$ in \mathbb{R}^{3} which is parallel to the $y z$-plane. Orient S with normal vector pointing in the direction of the postive x-axis. Use the definition of surface integral to calculate the flux of $\mathbf{F}(x, y, z)=(-x y, y z, x z)$ through S.
(22) Use the same surface S and \mathbf{F} as in the previous problem, but now use Stoke's theorem to calculate the flux of the curl from the previous problem.

