- (1) Give an example of a vector field \mathbf{F} having curl $\mathbf{F} = \mathbf{0}$, but where \mathbf{F} is not a gradient field.
- (2) Know the formal definitions of the following terms or the complete precise statements of the following theorems:
 - (a) Green's theorem
 - (b) planar divergence theorem
 - (c) Stokes' theorem
 - (d) Poincaré's theorem
 - (e) parameterized surface
 - (f) orientable surface
 - (g) one-sided surface
- (3) Give an example of a one-sided surface in \mathbb{R}^3 .
- (4) Give an example of an orientable surface in \mathbb{R}^3 .
- (5) Be able to do the following:
 - (a) Suppose that $D \subset \mathbb{R}^2$ is the union of two "nice" regions D_1 and D_2 along an edge C in their boundaries. Suppose that \mathbf{F} is a \mathbf{C}^1 vector field defined on the union $D = D_1 \cup D_2$. Prove that $\int_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \int_{\partial D_1} \mathbf{F} \cdot d\mathbf{s} + \int_{\partial D_2} \mathbf{F} \cdot d\mathbf{s}$.
 - (b) Give an outline of the proof of Green's theorem.
 - (c) Suppose that $X \subset \mathbb{R}^2$ is a simply connected open subset and that $\mathbf{F} \colon X \to \mathbb{R}^2$ has $\operatorname{curl} \mathbf{F} = \mathbf{0}$. Prove that if C is a simple closed curve in X then $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$. Use this to prove that \mathbf{F} is conservative.
- (6) Let $D \subset \mathbb{R}^2$ be the region bounded by the graphs of the equations $y = x^3$ and y = x and with $x \ge 0$. Suppose that $\mathbf{F}(x, y) = (xy + y, y^2x)$.
 - (a) Is D a type I, II, or III region or none of the above?

- (b) Orient ∂D so that D is always on the left. Calculate $\int_{\partial D} \mathbf{F} \cdot d\mathbf{s}$ directly.
- (c) Calculate $\iint_D \operatorname{curl} \mathbf{F} \cdot \mathbf{k} dA$ directly.
- (d) What is the relevance of Green's theorem to the preceding problems?
- (e) Is the vector field **F** conservative?
- (7) What is the flux of the vector field $\mathbf{F}(x,y) = (-y^2x, x^2y)$ across the circle of radius 2 centered at the origin? Just set up an appropriate single-variable integral. You do not need to solve it.
- (8) What is the circulation of the vector field $\mathbf{F}(x,y) = (-y^2x, x^2y)$ around the circle of radius 2 centered at the origin? Just set up an appropriate single-variable integral. You do not need to solve it.
- (9) Recall that if two particles, each with charge +1 are at points **p** and **q** respectively, the electric force exerted by the particle at **p** on the particle at **q** is $\frac{1}{||\mathbf{p}-\mathbf{q}||^3}(\mathbf{q}-\mathbf{p})$.
 - A wire C is bent into the shape of a circle of radius 1 centered at the origin in \mathbb{R}^2 . It is given a charge of +1 and so generates an electric field \mathbf{F} . How much work is done in moving a particle with charge +1 from (1/2,0) to (0,0)? Does it matter what path is taken? Why not? (You may leave your answer in integral form.)
- (10) Suppose that C_1 and C_2 are C^1 paths bounding a compact region A in \mathbb{R}^2 . Suppose that \mathbf{F} is a C^1 vector field defined on A such that the scalar curl of \mathbf{F} is a constant 9. State and explain the relationship between $\int_{C_1} \mathbf{F} \cdot d\mathbf{s}$ and $\int_{C_2} \mathbf{F} \cdot d\mathbf{s}$ if both are oriented counter-clockwise.
- (11) Suppose that C_1 and C_2 are C^1 simple closed curves bounding a region A in \mathbb{R}^2 . Assume that both C_1 and C_2 are oriented counterclockwise. Suppose that \mathbf{F} is a C^1 vector field defined on A such that the divergence of \mathbf{F} is a constant 9. State and explain the relationship between the flux of \mathbf{F} through C_1 and the flux of \mathbf{F} through C_2 .
- (12) (Challenge!) Suppose that D is the region obtained from \mathbb{R}^2 by removing 2 points $\mathbf{p_1}$ and $\mathbf{p_2}$. Suppose that \mathbf{F} is a \mathbf{C}^1 vector field defined on D with curl constantly zero.
 - (a) Are there simple closed curves $C_1, C_2, ...$ in D such that the sequence $\left(\int_{C_i} \mathbf{F} \cdot d\mathbf{s} \right)$ diverges to infinity?

- (b) What if we only require $C_1, C_2, ...$ to be closed (and not simple)?
- (c) What if $C_1, C_2,...$ are simple closed curves, but the scalar curl of **F** is always 1 (instead of 0)?
- (13) Is the vector field $\mathbf{F}(x,y,z) = \frac{1}{x^2 + y^2 + z^2} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ conservative on its domain? Explain.
- (14) Is the vector field $\mathbf{F}(x, y, z) = \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$ conservative on its domain?
- (15) Find a single variable integral representing the area enclosed by the path $\phi(t) = (2\cos(2t), 3\sin(3t))$ for $-\pi/3 \le t \le \pi/3$.
- (16) Let $\sigma: [1,2] \to \mathbb{R}^2$ be the path $\sigma(t) = (e^{t-1}, \sin(\pi/t))$. Let $\mathbf{F}(x,y) = (2x\cos y, -x^2\sin y)$. Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{s}$.

Hint: Show and then use the fact that the vector field is conservative.

- (17) Find a parameterization of the surface formed by the graph of $z = x^2 y^2$ with (x, y) in the triangle in the xy-plane formed by the x-axis, the y-axis, and the line y = -x + 1.
- (18) Is the surface in the previous problem a smooth surface? If no, at what points is it not smooth?
- (19) Find a parameterization of the surface formed by rotating the curve $\begin{pmatrix} \cos t + 5 \\ 2\sin t \end{pmatrix}$ with $0 \le t \le 2\pi$ around the *y*-axis.
- (20) Consider the surface

$$\mathbf{X}(s,t) = \begin{pmatrix} 2\sin 3t + t \\ \cos 2s \\ t^2 + s^2 \end{pmatrix}, \quad 0 \le t \le \pi/4, \quad 0 \le s \le \pi$$

Find the tangent and normal vectors to **X** at the point $(\pi/6, \pi/6)$. Is the surface smooth?

(21) Let S be the disc of radius 1 centered at (1,0,0) in \mathbb{R}^3 which is parallel to the yz-plane. Orient S with normal vector pointing in the direction of the postive x-axis. Use the definition of surface integral to calculate the flux of $\mathbf{F}(x,y,z) = (-xy,yz,xz)$ through S.

(22) Use the same surface S and \mathbf{F} as in the previous problem, but now use Stoke's theorem to calculate the flux of the curl from the previous problem.