MA 302: HW 6 – Conservative Vector Fields

Answer these questions on a separate sheet of paper. Remember that your work must be very neat and complete.

Problem A: Suppose that *P* is a particle with charge +1 at $\mathbf{x} \in \mathbb{R}^2$ and that Q is a particle with charge +1 at position $\mathbf{a} \in \mathbb{R}^2$. Coulomb's law states that the force (electric field) exerted by P on Q is (up to a constant of proportionality):

$$\mathbf{F}(\mathbf{a}) = \frac{1}{||\mathbf{a} - \mathbf{x}||^3} (\mathbf{a} - \mathbf{x})$$

(1) Show that f(a) = ⁻¹/_{||x-a||} is a potential function for F.
(2) Suppose that P is at x = 0 and that Q travels along the path a(t) =

for some fixed r > 0 and $0 \le t \le 5$. Compute the work done by the electric field exerted by *P* on *Q*. (Remember that the electric field is conservative!)

Problem B: Suppose that P_1 , P_2 , and P_3 are particles each with charge +1 at positions $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3} \in \mathbb{R}^2$ and that Q is a particle with charge +1 at position $\mathbf{a} \in \mathbb{R}^2$. The law of superposition states that the force (electric field) exerted by P_1 , P_2 , and P_3 on Q is (up to a constant of proportionality):

$$\mathbf{F}(\mathbf{a}) = \sum_{i=1}^{3} \frac{1}{||\mathbf{a} - \mathbf{x}_i||^3} (\mathbf{a} - \mathbf{x}_i)$$

(1) Find a potential function for \mathbf{F} .

(2) Suppose that $\mathbf{x_1} = \mathbf{0}$, $\mathbf{x_2} = (0, 1)$ and $\mathbf{x_3} = (0, 2)$. Suppose that Qtravels along the path $\mathbf{a}(t) = \begin{pmatrix} r \\ t \end{pmatrix}$ for some fixed r > 0 and $0 \le t \le 5$. Compute the work done by the electric field exerted by P_1 , P_2 , and

 P_3 on Q. (Remember that the electric field is conservative!)

Problem C: Suppose that \mathscr{P} is a wire, each point of which has charge +1 and suppose that Q is a particle with charge +1 at position $\mathbf{a} \in \mathbb{R}^2$. Let \mathbf{F} be the electric field generated by \mathscr{P} . Think of \mathbf{F} as the force exerted by \mathscr{P} on Q.

- (1) Use superposition to find a potential function for \mathbf{F} .
- (2) Suppose that \mathscr{P} is the portion of the y-axis between **0** and (0,5). Suppose that Q travels along the path $\mathbf{a}(t) = \begin{pmatrix} r \\ t \end{pmatrix}$ for some fixed r > 0 and $0 \le t \le 5$. Compute the work done by the electric field exerted by \mathscr{P} on Q. (Remember that the electric field is conservative!)

Problem D: For this problem assume that **F** is an (arbitrary) C¹ vector field defined on an open region $D \subset \mathbb{R}^2$. Recall that to say that **F** has path independent line integrals means that for all points **a** and **b** in *D* and for any two paths **x** and **y** in *D* joining **a** to **b** then $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s}$. Before attempting these problems, you may wish to review Theorem 1.5 on page 371.

- (1) Assume that **F** has path independent line integrals. Using only this fact and properties of line integrals, but not anything about conservative vector fields, prove that if $\phi : [a,b] \rightarrow D$ is a closed curve (i.e. $\phi(a) = \phi(b)$) then $\int_{\phi} \mathbf{F} \cdot d\mathbf{s} = 0$.
- (2) Assume that **F** has the property that if ϕ is a closed curve in *D* then $\int_{\phi} \mathbf{F} \cdot d\mathbf{s} = 0$. Prove (using only this fact and properties of line integrals) that **F** has path independent line integrals.

Problem E: Let $\mathbf{F}(x,y) = \frac{1}{x^2+y^2} \begin{pmatrix} -y \\ x \end{pmatrix}$.

- (1) Let $\phi_r(t) = r \begin{pmatrix} \cos(t/r^2) \\ \sin(t/r^2) \end{pmatrix}$. Show that ϕ_r is a flow line for **F** through the point (r, 0).
- (2) Calculate $\int_{\phi_r} \mathbf{F} \cdot d\mathbf{s}$.
- (3) Let $\mathbf{a} \in \mathbb{R}^2 \{\mathbf{0}\}$ be an arbitrary point. Let $\psi_r(t) = \mathbf{a} + r \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$ where *r* is a fixed number such that $0 < r < ||\mathbf{a}||$ and $0 \le t \le 2\pi$. Compute $\int_{\psi_r} \mathbf{F} \cdot d\mathbf{s}$.

(4) Using the definition of scalar curl of \mathbf{F} as

$$\lim_{r\to 0^+} \frac{1}{\pi r^2} \int_{\Psi_r} \mathbf{F} \cdot d\mathbf{s}$$

show that the scalar curl of **F** at each point $\mathbf{a} \in \mathbb{R}^2 - \{\mathbf{0}\}$ is zero.

(5) Using the definition of curl given in the book (i.e. $\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F}$) prove that $\operatorname{curl} \mathbf{F}(\mathbf{a}) = \mathbf{0}$ for all $\mathbf{a} \in \mathbb{R}^2 - \{\mathbf{0}\}$.

Observe that problem E gives an example of a vector field having curl everywhere zero but which is not a conservative vector field and which does not have path independent line integrals. This example will reoccur frequently.